Cognitive Effects of Nicotine: Recent Progress (2024)

1. Jamal A., King B.A., Neff L.J., Whitmill J., Babb S.D. Graffunder C.M. Current cigarette smoking among adults-united states, 2005-2015. MMWR Morb. Mortal. Wkly. Rep. 2016;65(44):1205–1211. [http://dx.doi.org/10.15585/mmwr.mm6544a2]. [PMID: 27832052]. [PubMed] [Google Scholar]

2. Prochaska J.J., Das S., Young-Wolff K.C. Smoking, Mental Illness, and Public Health. Annu. Rev. Public Health. 2017;38:165–185. [http://dx.doi.org/10.1146/annurev-publhealth-031816-044618]. [PMID: 27992725]. [PMC free article] [PubMed] [Google Scholar]

3. Vital signs: current cigarette smoking among adults aged ≥18 years with mental illness - United States, 2009-2011. MMWR Morb. Mortal. Wkly. Rep. 2013;62(5):81–87. [PMID: 23388551]. [PMC free article] [PubMed] [Google Scholar]

4. Holford T.R., Meza R., Warner K.E., Meernik C., Jeon J., Moolgavkar S.H., Levy D.T. Tobacco control and the reduction in smoking-related premature deaths in the United States, 1964-2012. JAMA. 2014;311(2):164–171. [http://dx.doi.org/10.1001/jama. 2013.285112]. [PMID: 24399555]. [PMC free article] [PubMed] [Google Scholar]

5. Hall F.S., Der-Avakian A., Gould T.J., Markou A., Shoaib M., Young J.W. Negative affective states and cognitive impairments in nicotine dependence. Neurosci. Biobehav. Rev. 2015;58:168–185. [http://dx.doi.org/10.1016/j.neubiorev.2015.06.004]. [PMID: 26054790]. [PMC free article] [PubMed] [Google Scholar]

6. Russell M.A.H., Peto J., Patel U.A. Classification of smoking by factorial structure of motives. J. R. Stat. Soc. Ser. A Stat. Soc. 1974;137:313–346. [http://dx.doi.org/10.2307/ 2344953]. [Google Scholar]

7. Wesnes K., Warburton D.M. Effects of smoking on rapid information processing performance. Neuropsychobiology. 1983;9(4):223–229. [http://dx.doi.org/10.1159/000117969]. [PMID: 6646394]. [PubMed] [Google Scholar]

8. Piper M.E., Piasecki T.M., Federman E.B., Bolt D.M., Smith S.S., Fiore M.C., Baker T.B. A multiple motives approach to tobacco dependence: The wisconsin inventory of smoking dependence motives (WISDM-68). J. Consult. Clin. Psychol. 2004;72(2):139–154. [http://dx.doi.org/10.1037/0022-006X.72.2.139]. [PMID: 15065950]. [PubMed] [Google Scholar]

9. Hatsukami D.K., Hughes J.R., Pickens R.W., Svikis D. Tobacco withdrawal symptoms: an experimental analysis. Psychopharmacology (Berl.) 1984;84(2):231–236. [http://dx.doi.org/10.1007/ BF00427451]. [PMID: 6438682]. [PubMed] [Google Scholar]

10. Hughes J.R., Hatsukami D. Signs and symptoms of tobacco withdrawal. Arch. Gen. Psychiatry. 1986;43(3):289–294. [http://dx.doi. org/10.1001/archpsyc.1986.01800030107013]. [PMID: 3954551]. [PubMed] [Google Scholar]

11. Jacobsen L.K., Krystal J.H., Mencl W.E., Westerveld M., Frost S.J., Pugh K.R. Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol. Psychiatry. 2005;57(1):56–66. [http://dx.doi.org/10.1016/j.biopsych.2004.10.022]. [PMID: 15607301]. [PubMed] [Google Scholar]

12. Xu J., Mendrek A., Cohen M.S., Monterosso J., Rodriguez P., Simon S.L., Brody A., Jarvik M., Domier C.P., Olmstead R., Ernst M., London E.D. Brain activity in cigarette smokers performing a working memory task: effect of smoking abstinence. Biol. Psychiatry. 2005;58(2):143–150. [http://dx.doi.org/10.1016/ j.biopsych.2005.03.028]. [PMID: 16038685]. [PMC free article] [PubMed] [Google Scholar]

13. Harrison E.L., Coppola S., McKee S.A. Nicotine deprivation and trait impulsivity affect smokers’ performance on cognitive tasks of inhibition and attention. Exp. Clin. Psychopharmacol. 2009;17(2):91–98. [http://dx.doi.org/10.1037/a0015657]. [PMID: 19331485]. [PMC free article] [PubMed] [Google Scholar]

14. McClernon F.J., Kollins S.H., Lutz A.M., Fitzgerald D.P., Murray D.W., Redman C., Rose J.E. Effects of smoking abstinence on adult smokers with and without attention deficit hyperactivity disorder: results of a preliminary study. Psychopharmacology (Berl.) 2008;197(1):95–105. [http://dx.doi.org/10.1007/s00213-007-1009-3]. [PMID: 18038223]. [PubMed] [Google Scholar]

15. de Leon J., Diaz F.J. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophr. Res. 2005;76(2-3):135–157. [http://dx. doi.org/10.1016/j.schres.2005.02.010]. [PMID: 15949648]. [PubMed] [Google Scholar]

16. Milberger S., Biederman J., Faraone S.V., Chen L., Jones J. Further evidence of an association between attention-deficit/ hyperactivity disorder and cigarette smoking. Findings from a high-risk sample of siblings. Am. J. Addict. 1997;6(3):205–217. [PMID: 9256986]. [PubMed] [Google Scholar]

17. Millan M.J., Agid Y., Brüne M., Bullmore E.T., Carter C.S., Clayton N.S., Connor R., Davis S., Deakin B., DeRubeis R.J., Dubois B., Geyer M.A., Goodwin G.M., Gorwood P., Jay T.M., Joëls M., Mansuy I.M., Meyer-Lindenberg A., Murphy D., Rolls E., Saletu B., Spedding M., Sweeney J., Whittington M., Young L.J. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 2012;11(2):141–168. [http://dx.doi.org/10.1038/nrd3628]. [PMID: 22293568]. [PubMed] [Google Scholar]

18. Sofuoglu M., DeVito E.E., Waters A.J., Carroll K.M. Cognitive function as a transdiagnostic treatment target in stimulant use disorders. J. Dual Diagn. 2016;12(1):90–106. [http://dx.doi.org/ 10.1080/15504263.2016.1146383]. [PMID: 26828702]. [PMC free article] [PubMed] [Google Scholar]

19. Besson M., Forget B. Cognitive dysfunction, affective states, and vulnerability to nicotine addiction: A multifactorial perspective. Front. Psychiatry. 2016;7:160. [http://dx.doi.org/10.3389/fpsyt. 2016.00160]. [PMID: 27708591]. [PMC free article] [PubMed] [Google Scholar]

20. Changeux J.P. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat. Rev. Neurosci. 2010;11(6):389–401. [http://dx.doi.org/10.1038/nrn2849]. [PMID: 20485364]. [PubMed] [Google Scholar]

21. dos Santos Coura R., Granon S. Prefrontal neuromodulation by nicotinic receptors for cognitive processes. Psychopharmacology (Berl.) 2012;221(1):1–18. [http://dx.doi.org/10.1007/s00213-011-2596-6]. [PMID: 22249358]. [PubMed] [Google Scholar]

22. Jasinska A.J., Zorick T., Brody A.L., Stein E.A. Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology. 2014;84:111–122. [http://dx. doi.org/10.1016/j.neuropharm.2013.02.015]. [PMID: 23474015]. [PMC free article] [PubMed] [Google Scholar]

23. Wallace T.L., Porter R.H. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem. Pharmacol. 2011;82(8):891–903. [http://dx.doi.org/10.1016/j.bcp. 2011.06.034]. [PMID: 21741954]. [PubMed] [Google Scholar]

24. Bertrand D., Lee C.H., Flood D., Marger F., Donnelly-Roberts D. Therapeutic potential of α7 nicotinic acetylcholine receptors. Pharmacol. Rev. 2015;67(4):1025–1073. [http://dx.doi.org/10. 1124/pr.113.008581]. [PMID: 26419447]. [PubMed] [Google Scholar]

25. Hurst R., Rollema H., Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther. 2013;137(1):22–54. [http://dx.doi.org/10.1016/j.pharmthera.2012.08.012]. [PMID: 22925690]. [PubMed] [Google Scholar]

26. Ashare R.L., Schmidt H.D. Optimizing treatments for nicotine dependence by increasing cognitive performance during withdrawal. Expert Opin. Drug Discov. 2014;9(6):579–594. [http:// dx.doi.org/10.1517/17460441.2014.908180]. [PMID: 24707983]. [PMC free article] [PubMed] [Google Scholar]

27. Robinson C.D. Neurocognitive Function as a Treatment Target for Tobacco Use Disorder. Curr. Behav. Neurosci. Rep. 2017;4(1):10–20. [http://dx.doi.org/10.1007/s40473-017-0105-x]. [Google Scholar]

28. Sutherland M.T., Ray K.L., Riedel M.C., Yanes J.A., Stein E.A., Laird A.R. Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies. Biol. Psychiatry. 2015;78(10):711–720. [http://dx.doi.org/10.1016/j.biopsych.2014.12.021]. [PMID: 25662104]. [PMC free article] [PubMed] [Google Scholar]

29. Durazzo T.C., Meyerhoff D.J., Nixon S.J. A comprehensive assessment of neurocognition in middle-aged chronic cigarette smokers. Drug Alcohol Depend. 2012;122(1-2):105–111. [http:// dx.doi.org/10.1016/j.drugalcdep.2011.09.019]. [PMID: 21992872]. [PMC free article] [PubMed] [Google Scholar]

30. Nooyens A.C., van Gelder B.M., Verschuren W.M. Smoking and cognitive decline among middle-aged men and women: the Doetinchem Cohort Study. Am. J. Public Health. 2008;98(12):2244–2250. [http://dx.doi.org/10.2105/AJPH.2007.130294]. [PMID: 18923116]. [PMC free article] [PubMed] [Google Scholar]

31. Paul R.H., Brickman A.M., Cohen R.A., Williams L.M., Niaura R., Pogun S., Clark C.R., Gunstad J., Gordon E. Cognitive status of young and older cigarette smokers: data from the international brain database. J. Clin. Neurosci. 2006;13(4):457–465. [http://dx. doi.org/10.1016/j.jocn.2005.04.012]. [PMID: 16678725]. [PubMed] [Google Scholar]

32. Wagner M., Schulze-Rauschenbach S., Petrovsky N., Brinkmeyer J., von der Goltz C., Gründer G., Spreckelmeyer K.N., Wienker T., Diaz-Lacava A., Mobascher A., Dahmen N., Clepce M., Thuerauf N., Kiefer F., de Millas J.W., Gallinat J., Winterer G. Neurocognitive impairments in non-deprived smokers--results from a population-based multi-center study on smoking-related behavior. Addict. Biol. 2013;18(4):752–761. [http://dx. doi.org/10.1111/j.1369-1600.2011.00429.x]. [PMID: 22339903]. [PubMed] [Google Scholar]

33. Lawrence D., Mitrou F., Zubrick S.R. Smoking and mental illness: results from population surveys in Australia and the United States. BMC Public Health. 2009;9:285. [http://dx.doi.org/10. 1186/1471-2458-9-285]. [PMID: 19664203]. [PMC free article] [PubMed] [Google Scholar]

34. Hall S.M., Prochaska J.J. Treatment of smokers with co-occurring disorders: emphasis on integration in mental health and addiction treatment settings. Annu. Rev. Clin. Psychol. 2009;5:409–431. [http://dx.doi.org/10.1146/annurev.clinpsy.032408.153614]. [PMID: 19327035]. [PMC free article] [PubMed] [Google Scholar]

35. Grant B.F., Hasin D.S., Chou S.P., Stinson F.S., Dawson D.A. Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch. Gen. Psychiatry. 2004;61(11):1107–1115. [http://dx.doi.org/10.1001/archpsyc.61.11.1107]. [PMID: 15520358]. [PubMed] [Google Scholar]

36. Stark M.J., Campbell B.K. Cigarette smoking and methadone dose levels. Am. J. Drug Alcohol Abuse. 1993;19(2):209–217. [http://dx.doi.org/10.3109/00952999309002681]. [PMID: 8484357]. [PubMed] [Google Scholar]

37. Schaefer J., Giangrande E., Weinberger D.R., Dickinson D. The global cognitive impairment in schizophrenia: consistent over decades and around the world. Schizophr. Res. 2013;150(1):42–50. [http://dx.doi.org/10.1016/j.schres.2013.07.009]. [PMID: 23911259]. [PMC free article] [PubMed] [Google Scholar]

38. Bourne C., Aydemir Ö., Balanzá-Martínez V., Bora E., Brissos S., Cavanagh J.T., Clark L., Cubukcuoglu Z., Dias V.V. Dittmann S., Ferrier I.N., Fleck D.E., Frangou S., Gallagher P. Jones L., Kieseppä T., Martínez-Aran A., Melle I., Moore P.B. Mur M., Pfennig A., Raust A., Senturk V., Simonsen C., Smith D.J., Bio D.S., Soeiro-de-Souza M.G., Stoddart S.D., Sundet K. Szöke A., Thompson J.M., Torrent C., Zalla T., Craddock N. Andreassen O.A., Leboyer M., Vieta E., Bauer M., Worhunsky P.D., Tzagarakis C., Rogers R.D., Geddes J.R., Goodwin G.M. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr. Scand. 2013;128(3):149–162. [http://dx.doi.org/10.1111/ acps.12133]. [PMID: 23617548]. [PubMed] [Google Scholar]

39. Scott J.C., Matt G.E., Wrocklage K.M., Crnich C., Jordan J., Southwick S.M., Krystal J.H., Schweinsburg B.C. A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychol. Bull. 2015;141(1):105–140. [http://dx.doi.org/10.1037/a0038039]. [PMID: 25365762]. [PMC free article] [PubMed] [Google Scholar]

40. Schoechlin C., Engel R.R. Neuropsychological performance in adult attention-deficit hyperactivity disorder: meta-analysis of empirical data. Arch. Clin. Neuropsychol. 2005;20(6):727–744. [http://dx.doi.org/10.1016/j.acn.2005.04.005]. [PMID: 15953706]. [PubMed] [Google Scholar]

41. Jovanovski D., Erb S., Zakzanis K.K. Neurocognitive deficits in cocaine users: a quantitative review of the evidence. J. Clin. Exp. Neuropsychol. 2005;27(2):189–204. [http://dx.doi.org/10.1080/ 13803390490515694]. [PMID: 15903150]. [PubMed] [Google Scholar]

42. Baldacchino A., Balfour D.J., Passetti F., Humphris G., Matthews K. Neuropsychological consequences of chronic opioid use: a quantitative review and meta-analysis. Neurosci. Biobehav. Rev. 2012;36(9):2056–2068. [http://dx.doi.org/10.1016/j.neubiorev. 2012.06.006]. [PMID: 22771335]. [PubMed] [Google Scholar]

43. Benowitz N.L. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009;49:57–71. [http://dx.doi.org/10.1146/annurev.pharmtox.48. 113006.094742]. [PMID: 18834313]. [PMC free article] [PubMed] [Google Scholar]

44. Clader J.W., Wang Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr. Pharm. Des. 2005;11(26):3353–3361. [http://dx.doi.org/10.2174/138161205774370762]. [PMID: 16250841]. [PubMed] [Google Scholar]

45. Dani J.A., Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 2007;47:699–729. [http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105214]. [PMID: 17009926]. [PubMed] [Google Scholar]

46. Zoli M., Pistillo F., Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. 2015. [PubMed]

47. Picciotto M.R., Addy N.A., Mineur Y.S., Brunzell D.H. It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog. Neurobiol. 2008;84(4):329–342. [http://dx.doi.org/10.1016/j.pneurobio.2007.12.005]. [PMID: 18242816]. [PMC free article] [PubMed] [Google Scholar]

48. Quick M.W., Lester R.A. Desensitization of neuronal nicotinic receptors. J. Neurobiol. 2002;53(4):457–478. [http://dx.doi.org/10.1002/neu.10109]. [PMID: 12436413]. [PubMed] [Google Scholar]

49. Penton R.E., Lester R.A. Cellular events in nicotine addiction. Semin. Cell Dev. Biol. 2009;20(4):418–431. [http://dx.doi.org/10. 1016/j.semcdb.2009.01.001]. [PMID: 19560047]. [PMC free article] [PubMed] [Google Scholar]

50. Mansvelder H.D., Mertz M., Role L.W. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin. Cell Dev. Biol. 2009;20(4):432–440. [http://dx.doi.org/10.1016/j.semcdb.2009.01.007]. [PMID: 19560048]. [PMC free article] [PubMed] [Google Scholar]

51. Buccafusco J.J., Beach J.W., Terry A.V., Jr Desensitization of nicotinic acetylcholine receptors as a strategy for drug development. J. Pharmacol. Exp. Ther. 2009;328(2):364–370. [http://dx. doi.org/10.1124/jpet.108.145292]. [PMID: 19023041]. [PMC free article] [PubMed] [Google Scholar]

52. Levin E.D. Complex relationships of nicotinic receptor actions and cognitive functions. Biochem. Pharmacol. 2013;86(8):1145–1152. [http://dx.doi.org/10.1016/j.bcp.2013.07.021]. [PMID: 23928190]. [PMC free article] [PubMed] [Google Scholar]

53. Wallace T.L., Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem. Pharmacol. 2013;85(12):1713–1720. [http://dx.doi.org/10.1016/j.bcp.2013. 04.001]. [PMID: 23628449]. [PubMed] [Google Scholar]

54. Kutlu M.G., Gould T.J. Nicotinic receptors, memory, and hippocampus. Curr. Top. Behav. Neurosci. 2015;23:137–163. [http://dx.doi.org/10.1007/978-3-319-13665-3_6]. [PMID: 25655890]. [PubMed] [Google Scholar]

55. Couey J.J., Meredith R.M., Spijker S., Poorthuis R.B., Smit A.B., Brussaard A.B., Mansvelder H.D. Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron. 2007;54(1):73–87. [http://dx.doi.org/10.1016/j.neuron.2007.03.006]. [PMID: 17408579]. [PubMed] [Google Scholar]

56. Kenney J.W., Gould T.J. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol. Neurobiol. 2008;38(1):101–121. [http://dx.doi.org/10.1007/s12035-008-8037-9]. [PMID: 18690555]. [PMC free article] [PubMed] [Google Scholar]

57. Wooltorton J.R., Pidoplichko V.I., Broide R.S., Dani J.A. Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J. Neurosci. 2003;23(8):3176–3185. [PMID: 12716925]. [PMC free article] [PubMed] [Google Scholar]

58. Giniatullin R., Nistri A., Yakel J.L. Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 2005;28(7):371–378. [http://dx.doi.org/10.1016/j.tins.2005.04.009]. [PMID: 15979501]. [PubMed] [Google Scholar]

59. Gotti C., Moretti M., Gaimarri A., Zanardi A., Clementi F., Zoli M. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol. 2007;74(8):1102–1111. [http://dx.doi.org/10.1016/j.bcp.2007.05.023]. [PMID: 17597586]. [PubMed] [Google Scholar]

60. Leiser S.C., Bowlby M.R., Comery T.A., Dunlop J. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. 2009;122(3):302–311. [http://dx.doi.org/10.1016/j.pharmthera. 2009.03.009]. [PMID: 19351547]. [PubMed] [Google Scholar]

61. Hoyle E., Genn R.F., Fernandes C., Stolerman I.P. Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task. Psychopharmacology (Berl.) 2006;189(2):211–223. [http://dx.doi.org/10.1007/s00213-006-0549-2]. [PMID: 17019565]. [PMC free article] [PubMed] [Google Scholar]

62. Fernandes C., Hoyle E., Dempster E., Schalkwyk L.C., Collier D.A. Performance deficit of alpha7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav. 2006;5(6):433–440. [http://dx.doi.org/10.1111/j.1601-183X.2005.00176.x]. [PMID: 16923147]. [PubMed] [Google Scholar]

63. Young J.W., Finlayson K., Spratt C., Marston H.M., Crawford N., Kelly J.S., Sharkey J. Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology. 2004;29(5):891–900. [http://dx.doi.org/10.1038/sj.npp.1300393]. [PMID: 14970827]. [PubMed] [Google Scholar]

64. Taiminen T.J., Salokangas R.K., Saarijärvi S., Niemi H., Lehto H., Ahola V., Syvälahti E. Smoking and cognitive deficits in schizophrenia: a pilot study. Addict. Behav. 1998;23(2):263–266. [http://dx.doi.org/10.1016/S0306-4603(97)00028-2]. [PMID: 9573430]. [PubMed] [Google Scholar]

65. Nomikos G.G., Schilström B., Hildebrand B.E., Panagis G., Grenhoff J., Svensson T.H. Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behav. Brain Res. 2000;113(1-2):97–103. [http://dx.doi.org/10.1016/ S0166-4328(00)00204-7]. [PMID: 10942036]. [PubMed] [Google Scholar]

66. Adler L.E., Hoffer L.D., Wiser A., Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am. J. Psychiatry. 1993;150(12):1856–1861. [http://dx.doi.org/10.1176/ajp.150.12.1856]. [PMID: 8238642]. [PubMed] [Google Scholar]

67. Martin-Ruiz C.M., Haroutunian V.H., Long P., Young A.H., Davis K.L., Perry E.K., Court J.A. Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol. Psychiatry. 2003;54(11):1222–1233. [http://dx.doi.org/10.1016/ S0006-3223(03)00348-2]. [PMID: 14643090]. [PubMed] [Google Scholar]

68. Freedman R., Hall M., Adler L.E., Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol. Psychiatry. 1995;38(1):22–33. [http://dx.doi.org/10.1016/0006-3223(94)00252-X]. [PMID: 7548469]. [PubMed] [Google Scholar]

69. Breese C.R., Lee M.J., Adams C.E., Sullivan B., Logel J., Gillen K.M., Marks M.J., Collins A.C., Leonard S. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology. 2000;23(4):351–364. [http://dx.doi.org/10.1016/S0893-133X(00)00121-4]. [PMID: 10989262]. [PubMed] [Google Scholar]

70. Guan Z.Z., Zhang X., Blennow K., Nordberg A. Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport. 1999;10(8):1779–1782. [http://dx.doi.org/10.1097/00001756-199906030-00028]. [PMID: 10501574]. [PubMed] [Google Scholar]

71. Potter D., Summerfelt A., Gold J., Buchanan R.W. Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr. Bull. 2006;32(4):692–700. [http://dx.doi.org/10.1093/schbul/sbj050]. [PMID: 16469942]. [PMC free article] [PubMed] [Google Scholar]

72. Martin L.F., Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int. Rev. Neurobiol. 2007;78:225–246. [http://dx.doi.org/10.1016/S0074-7742(06)78008-4]. [PMID: 17349863]. [PubMed] [Google Scholar]

73. Palmer B.W., Heaton R.K., Paulsen J.S., Kuck J., Braff D., Harris M.J., Zisook S., Jeste D.V. Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology. 1997;11(3):437–446. [http://dx.doi.org/10.1037/0894-4105.11.3.437]. [PMID: 9223148]. [PubMed] [Google Scholar]

74. Reichenberg A., Weiser M., Caspi A., Knobler H.Y., Lubin G., Harvey P.D., Rabinowitz J., Davidson M. Premorbid intellectual functioning and risk of schizophrenia and spectrum disorders. J. Clin. Exp. Neuropsychol. 2006;28(2):193–207. [http://dx.doi.org/10.1080/13803390500360372]. [PMID: 16484093]. [PubMed] [Google Scholar]

75. Medalia A., Thysen J., Freilich B. Do people with schizophrenia who have objective cognitive impairment identify cognitive deficits on a self report measure? Schizophr. Res. 2008;105(1-3):156–164. [http://dx.doi.org/10.1016/j.schres.2008.07.007]. [PMID: 18718740]. [PubMed] [Google Scholar]

76. Leonard S., Adler L.E., Benhammou K., Berger R., Breese C.R., Drebing C., Gault J., Lee M.J., Logel J., Olincy A., Ross R.G., Stevens K., Sullivan B., Vianzon R., Virnich D.E., Waldo M., Walton K., Freedman R. Smoking and mental illness. Pharmacol. Biochem. Behav. 2001;70(4):561–570. [http://dx.doi.org/10.1016/S0091-3057(01)00677-3]. [PMID: 11796154]. [PubMed] [Google Scholar]

77. Poirier M.F., Canceil O., Baylé F., Millet B., Bourdel M.C., Moatti C., Olié J.P., Attar-Lévy D. Prevalence of smoking in psychiatric patients. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2002;26(3):529–537. [http://dx.doi.org/10.1016/S0278-5846(01)00304-9]. [PMID: 11999904]. [PubMed] [Google Scholar]

78. Feduccia A.A., Chatterjee S., Bartlett S.E. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front. Mol. Neurosci. 2012;5:83. [http://dx.doi.org/10.3389/fnmol.2012.00083]. [PMID: 22876217]. [PMC free article] [PubMed] [Google Scholar]

79. Granon S., Changeux J.P. Attention-deficit/hyperactivity disorder: a plausible mouse model? Acta Paediatr. 2006;95(6):645–649. [http://dx.doi.org/10.1080/08035250600719747]. [PMID: 16754543]. [PubMed] [Google Scholar]

80. Granon S., Faure P., Changeux J.P. Executive and social behaviors under nicotinic receptor regulation. Proc. Natl. Acad. Sci. USA. 2003;100(16):9596–9601. [http://dx.doi.org/10.1073/pnas. 1533498100]. [PMID: 12876201]. [PMC free article] [PubMed] [Google Scholar]

81. Guillem K., Bloem B., Poorthuis R.B., Loos M., Smit A.B., Maskos U., Spijker S., Mansvelder H.D. Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science. 2011;333(6044):888–891. [http://dx.doi.org/10. 1126/science.1207079]. [PMID: 21836018]. [PubMed] [Google Scholar]

82. Cole R.D., Poole R.L., Guzman D.M., Gould T.J., Parikh V. Contributions of β2 subunit-containing nAChRs to chronic nicotine-induced alterations in cognitive flexibility in mice. Psychopharmacology (Berl.) 2015;232(7):1207–1217. [http://dx.doi.org/10.1007/s00213-014-3754-4]. [PMID: 25281224]. [PMC free article] [PubMed] [Google Scholar]

83. Picciotto M.R., Zoli M., Léna C., Bessis A., Lallemand Y., Le Novère N., Vincent P., Pich E.M., Brûlet P., Changeux J.P. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature. 1995;374(6517):65–67. [http://dx.doi.org/10.1038/374065a0]. [PMID: 7870173]. [PubMed] [Google Scholar]

84. Besson M., Suarez S., Cormier A., Changeux J.P., Granon S. Chronic nicotine exposure has dissociable behavioural effects on control and beta2-/- mice. Behav. Genet. 2008;38(5):503–514. [http://dx.doi.org/10.1007/s10519-008-9216-1]. [PMID: 18607712]. [PubMed] [Google Scholar]

85. Gulick D., Gould T.J. Varenicline ameliorates ethanol-induced deficits in learning in C57BL/6 mice. Neurobiol. Learn. Mem. 2008;90(1):230–236. [http://dx.doi.org/10.1016/j.nlm.2008.03.002]. [PMID: 18411066]. [PMC free article] [PubMed] [Google Scholar]

86. Raybuck J.D., Portugal G.S., Lerman C., Gould T.J. Varenicline ameliorates nicotine withdrawal-induced learning deficits in C57BL/6 mice. Behav. Neurosci. 2008;122(5):1166–1171. [http://dx.doi.org/10.1037/a0012601]. [PMID: 18823172]. [PMC free article] [PubMed] [Google Scholar]

87. Jackson K.J., Marks M.J., Vann R.E., Chen X., Gamage T.F., Warner J.A., Damaj M.I. Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J. Pharmacol. Exp. Ther. 2010;334(1):137–146. [http://dx. doi.org/10.1124/jpet.110.165738]. [PMID: 20400469]. [PMC free article] [PubMed] [Google Scholar]

88. Bailey C.D., De Biasi M., Fletcher P.J., Lambe E.K. The nicotinic acetylcholine receptor alpha5 subunit plays a key role in attention circuitry and accuracy. J. Neurosci. 2010;30(27):9241–9252. [http://dx.doi.org/10.1523/JNEUROSCI.2258-10.2010]. [PMID: 20610759]. [PMC free article] [PubMed] [Google Scholar]

89. Bailey C.D., De Biasi M., Fletcher P.J., Lambe E.K. The nicotinic acetylcholine receptor alpha5 subunit plays a key role in attention circuitry and accuracy. J. Neurosci. 2010;30(27):9241–9252. [http://dx.doi.org/10.1523/JNEUROSCI.2258-10.2010]. [PMID: 20610759]. [PMC free article] [PubMed] [Google Scholar]

90. Jensen K.P., DeVito E.E., Herman A.I., Valentine G.W., Gelernter J., Sofuoglu M.A. CHRNA5 smoking risk variant decreases the aversive effects of nicotine in humans. Neuropsychopharmacology. 2015;40(12):2813–2821. [http://dx.doi.org/10.1038/npp. 2015.131]. [PMID: 25948103]. [PMC free article] [PubMed] [Google Scholar]

91. Nieoullon A. Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 2002;67(1):53–83. [http://dx.doi.org/10.1016/S0301-0082(02)00011-4]. [PMID: 12126656]. [PubMed] [Google Scholar]

92. Tanila H., Björklund M., Riekkinen P., Jr Cognitive changes in mice following moderate MPTP exposure. Brain Res. Bull. 1998;45(6):577–582. [http://dx.doi.org/10.1016/S0361-9230(97)00452-8]. [PMID: 9566501]. [PubMed] [Google Scholar]

93. Colzato L.S., van den Wildenberg W.P., van Wouwe N.C., Pannebakker M.M., Hommel B. Dopamine and inhibitory action control: evidence from spontaneous eye blink rates. Exp. Brain Res. 2009;196(3):467–474. [http://dx.doi.org/10.1007/s00221-009-1862-x]. [PMID: 19484465]. [PMC free article] [PubMed] [Google Scholar]

94. Missale C., Nash S.R., Robinson S.W., Jaber M., Caron M.G. Dopamine receptors: from structure to function. Physiol. Rev. 1998;78(1):189–225. [http://dx.doi.org/10.1152/physrev.1998.78. 1.189]. [PMID: 9457173]. [PubMed] [Google Scholar]

95. van Holstein M., Aarts E., van der Schaaf M.E., Geurts D.E., Verkes R.J., Franke B., van Schouwenburg M.R., Cools R. Human cognitive flexibility depends on dopamine D2 receptor signaling. Psychopharmacology (Berl.) 2011;218(3):567–578. [http://dx.doi.org/10.1007/s00213-011-2340-2]. [PMID: 21611724]. [PMC free article] [PubMed] [Google Scholar]

96. Floresco S.B. Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology. 2006;31(2):297–309. [PubMed] [Google Scholar]

97. Parikh V., Man K., Decker M.W., Sarter M. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J. Neurosci. 2008;28(14):3769–3780. [http://dx.doi.org/10.1523/JNEUROSCI.5251-07.2008]. [PMID: 18385335]. [PMC free article] [PubMed] [Google Scholar]

98. Sarter M., Parikh V., Howe W.M. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem. Pharmacol. 2009;78(7):658–667. [http://dx. doi.org/10.1016/j.bcp.2009.04.019]. [PMID: 19406107]. [PMC free article] [PubMed] [Google Scholar]

99. Männistö P.T., Tuomainen P., Tuominen R.K. Different in vivo properties of three new inhibitors of catechol O-methyltransferase in the rat. Br. J. Pharmacol. 1992;105(3):569–574. [http://dx. doi.org/10.1111/j.1476-5381.1992.tb09020.x]. [PMID: 1628144]. [PMC free article] [PubMed] [Google Scholar]

100. Sengupta S., Grizenko N., Schmitz N., Schwartz G., Bellingham J., Polotskaia A., Stepanian M.T., Goto Y., Grace A.A., Joober R. COMT Val108/158Met polymorphism and the modulation of task-oriented behavior in children with ADHD. Neuropsychopharmacology. 2008;33(13):3069–3077. [http://dx.doi.org/10.1038/npp.2008.85]. [PMID: 18580877]. [PMC free article] [PubMed] [Google Scholar]

101. Tammimäki A.E., Männistö P.T. Are genetic variants of COMT associated with addiction? Pharmacogenet. Genomics. 2010;20(12):717–741. [PMID: 20975619]. [PubMed] [Google Scholar]

102. Gogos J.A., Morgan M., Luine V., Santha M., Ogawa S., Pfaff D., Karayiorgou M. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc. Natl. Acad. Sci. USA. 1998;95(17):9991–9996. [http://dx.doi.org/10.1073/pnas.95.17.9991]. [PMID: 9707588]. [PMC free article] [PubMed] [Google Scholar]

103. Yavich L., Forsberg M.M., Karayiorgou M., Gogos J.A., Männistö P.T. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J. Neurosci. 2007;27(38):10196–10209. [http://dx.doi.org/10.1523/ JNEUROSCI.0665-07.2007]. [PMID: 17881525]. [PMC free article] [PubMed] [Google Scholar]

104. Brody A.L., Mandelkern M.A., Olmstead R.E., Scheibal D., Hahn E., Shiraga S., Zamora-Paja E., Farahi J., Saxena S., London E.D., McCracken J.T. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch. Gen. Psychiatry. 2006;63(7):808–816. [http://dx.doi.org/10.1001/archpsyc.63.7.808]. [PMID: 16818870]. [PMC free article] [PubMed] [Google Scholar]

105. Guo S., Chen D.F., Zhou D.F., Sun H.Q., Wu G.Y., Haile C.N., Kosten T.A., Kosten T.R., Zhang X.Y. Association of functional catechol O-methyl transferase (COMT) Val108Met polymorphism with smoking severity and age of smoking initiation in Chinese male smokers. Psychopharmacology (Berl.) 2007;190(4):449–456. [http://dx.doi.org/10.1007/s00213-006-0628-4]. [PMID: 17206495]. [PubMed] [Google Scholar]

106. Herman A.I., Jatlow P.I., Gelernter J., Listman J.B., Sofuoglu M. COMT Val158Met modulates subjective responses to intravenous nicotine and cognitive performance in abstinent smokers. Pharmacogenomics J. 2013;13(6):490–497. [http://dx.doi.org/10. 1038/tpj.2013.1]. [PMID: 23459442]. [PMC free article] [PubMed] [Google Scholar]

107. Loughead J., Wileyto E.P., Valdez J.N., Sanborn P., Tang K., Strasser A.A., Ruparel K., Ray R., Gur R.C., Lerman C. Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol. Psychiatry. 2009;14(8):820–826. [http://dx.doi.org/10.1038/mp.2008.132]. [PMID: 19065145]. [PMC free article] [PubMed] [Google Scholar]

108. Wardle M.C., de Wit H., Penton-Voak I., Lewis G., Munafò M.R. Lack of association between COMT and working memory in a population-based cohort of healthy young adults. Neuropsychopharmacology. 2013;38(7):1253–1263. [http://dx.doi.org/10.1038/ npp.2013.24]. [PMID: 23337869]. [PMC free article] [PubMed] [Google Scholar]

109. Barnett J.H., Scoriels L., Munafò M.R. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol. Psychiatry. 2008;64(2):137–144. [http://dx.doi.org/10.1016/j.biopsych.2008.01.005]. [PMID: 18339359]. [PubMed] [Google Scholar]

110. Ashare R.L., Valdez J.N., Ruparel K., Albelda B., Hopson R.D., Keefe J.R., Loughead J., Lerman C. Association of abstinence-induced alterations in working memory function and COMT genotype in smokers. Psychopharmacology (Berl.) 2013;230(4):653–662. [http://dx.doi.org/10.1007/s00213-013-3197-3]. [PMID: 23828159]. [PMC free article] [PubMed] [Google Scholar]

111. Hoffmann D., Wynder E.L. Chemical constituents and bioactivity of tobacco smoke. 1986. [PubMed] [Google Scholar]

112. Hatsukami D.K. Biomarkers to assess the utility of potential reduced exposure tobacco products. Nicotine Tob. Res. 2006;8(4):600–622. [PMC free article] [PubMed] [Google Scholar]

113. Myers C.S., Taylor R.C., Moolchan E.T., Heishman S.J. Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacology. 2008;33(3):588–598. [http://dx.doi.org/10.1038/sj.npp.1301425]. [PMID: 17443125]. [PubMed] [Google Scholar]

114. Poltavski D.V., Petros T. Effects of transdermal nicotine on attention in adult non-smokers with and without attentional deficits. Physiol. Behav. 2006;87(3):614–624. [http://dx.doi.org/10.1016/ j.physbeh.2005.12.011]. [PMID: 16466655]. [PubMed] [Google Scholar]

115. Foulds J., Stapleton J., Swettenham J., Bell N., McSorley K., Russell M.A. Cognitive performance effects of subcutaneous nicotine in smokers and never-smokers. Psychopharmacology (Berl.) 1996;127(1):31–38. [http://dx.doi.org/10.1007/BF02805972]. [PMID: 8880941]. [PubMed] [Google Scholar]

116. Kleykamp B.A., Jennings J.M., Blank M.D., Eissenberg T. The effects of nicotine on attention and working memory in never-smokers. Psychol. Addict. Behav. 2005;19(4):433–438. [http://dx. doi.org/10.1037/0893-164X.19.4.433]. [PMID: 16366815]. [PubMed] [Google Scholar]

117. DeVito E.E., Herman A.I., Waters A.J., Valentine G.W., Sofuoglu M. Subjective, physiological, and cognitive responses to intravenous nicotine: effects of sex and menstrual cycle phase. Neuropsychopharmacology. 2014;39(6):1431–1440. [http://dx.doi.org/10.1038/npp.2013.339]. [PMID: 24345818]. [PMC free article] [PubMed] [Google Scholar]

118. Heishman S.J., Taylor R.C., Henningfield J.E. Nicotine and smoking:a review of effects on human performance. Exp. Clin. Psychopharmacol. 1994;2:345–395. [http://dx.doi.org/10.1037/ 1064-1297.2.4.345]. [Google Scholar]

119. Heishman S.J. What aspects of human performance are truly enhanced by nicotine? Addiction. 1998;93(3):317–320. [http://dx. doi.org/10.1080/09652149835864]. [PMID: 10328040]. [PubMed] [Google Scholar]

120. Heishman S.J., Kleykamp B.A., Singleton E.G. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology (Berl.) 2010;210(4):453–469. [http://dx. doi.org/10.1007/s00213-010-1848-1]. [PMID: 20414766]. [PMC free article] [PubMed] [Google Scholar]

121. Posner M.I., Rothbart M.K. Research on attention networks as a model for the integration of psychological science. Annu. Rev. Psychol. 2007;58:1–23. [http://dx.doi.org/10.1146/annurev.psych.58. 110405.085516]. [PMID: 17029565]. [PubMed] [Google Scholar]

122. Grundey J., Amu R., Ambrus G.G., Batsikadze G., Paulus W., Nitsche M.A. Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine. Psychopharmacology (Berl.) 2015;232(14):2491–2501. [http://dx.doi.org/10.1007/s00213-015-3880-7]. [PMID: 25721074]. [PubMed] [Google Scholar]

123. Ettinger U., Faiola E., Kasparbauer A.M., Petrovsky N., Chan R.C., Liepelt R., Kumari V. Effects of nicotine on response inhibition and interference control. Psychopharmacology (Berl.) 2017;234(7):1093–1111. [http://dx.doi.org/10.1007/s00213-017-4542-8]. [PMID: 28150023]. [PubMed] [Google Scholar]

124. Evans D.E., Maxfield N.D., Van Rensburg K.J., Oliver J.A., Jentink K.G., Drobes D.J. Nicotine deprivation influences P300 markers of cognitive control. Neuropsychopharmacology. 2013;38(12):2525–2531. [http://dx.doi.org/10.1038/npp.2013.159]. [PMID: 23807239]. [PMC free article] [PubMed] [Google Scholar]

125. Waters A.J., Sutton S.R. Direct and indirect effects of nicotine/smoking on cognition in humans. Addict. Behav. 2000;25(1):29–43. [http://dx.doi.org/10.1016/S0306-4603(99)00023-4]. [PMID: 10708317]. [PubMed] [Google Scholar]

126. Kassel J.D., Shiffman S. Attentional mediation of cigarette smoking’s effect on anxiety. Health Psychol. 1997;16(4):359–368. [http://dx.doi.org/10.1037/0278-6133.16.4.359]. [PMID: 9237088]. [PubMed] [Google Scholar]

127. Brody A.L., Mandelkern M.A., London E.D., Olmstead R.E., Farahi J., Scheibal D., Jou J., Allen V., Tiongson E., Chefer S.I., Koren A.O., Mukhin A.G. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch. Gen. Psychiatry. 2006;63(8):907–915. [http://dx.doi.org/10.1001/archpsyc. 63.8.907]. [PMID: 16894067]. [PMC free article] [PubMed] [Google Scholar]

128. Esterlis I., Cosgrove K.P., Batis J.C., Bois F., Stiklus S.M., Perkins E., Seibyl J.P., Carson R.E., Staley J.K. Quantification of smoking-induced occupancy of beta2-nicotinic acetylcholine receptors: estimation of nondisplaceable binding. J. Nucl. Med. 2010;51(8):1226–1233. [http://dx.doi.org/10.2967/jnumed.109. 072447]. [PMID: 20660383]. [PMC free article] [PubMed] [Google Scholar]

129. Brody A.L., Mukhin A.G., La Charite J., Ta K., Farahi J., Sugar C.A., Mamoun M.S., Vellios E., Archie M., Kozman M., Phuong J., Arlorio F., Mandelkern M.A. Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers. Int. J. Neuropsychopharmacol. 2013;16(5):957–966. [http://dx.doi.org/10.1017/S1461145712001022]. [PMID: 23171716]. [PMC free article] [PubMed] [Google Scholar]

130. Cosgrove K.P., Esterlis I., McKee S.A., Bois F., Seibyl J.P., Mazure C.M., Krishnan-Sarin S., Staley J.K., Picciotto M.R., O’Malley S.S. Sex differences in availability of β2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers. Arch. Gen. Psychiatry. 2012;69(4):418–427. [http://dx.doi.org/10.1001/ archgenpsychiatry.2011.1465]. [PMID: 22474108]. [PMC free article] [PubMed] [Google Scholar]

131. Eaton J.B., Lucero L.M., Stratton H., Chang Y., Cooper J.F., Lindstrom J.M., Lukas R.J., Whiteaker P. The unique α4+/-α4 agonist binding site in (α4)3(β2)2 subtype nicotinic acetylcholine receptors permits differential agonist desensitization pharmacology versus the (α4)2(β2)3 subtype. J. Pharmacol. Exp. Ther. 2014;348(1):46–58. [http://dx.doi.org/10.1124/jpet.113.208389]. [PMID: 24190916]. [PMC free article] [PubMed] [Google Scholar]

132. Breese C.R., Marks M.J., Logel J., Adams C.E., Sullivan B., Collins A.C., Leonard S. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J. Pharmacol. Exp. Ther. 1997;282(1):7–13. [PMID: 9223534]. [PubMed] [Google Scholar]

133. Cosgrove K.P., Batis J., Bois F., Maciejewski P.K., Esterlis I., Kloczynski T., Stiklus S., Krishnan-Sarin S., O’Malley S., Perry E., Tamagnan G., Seibyl J.P., Staley J.K. beta2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch. Gen. Psychiatry. 2009;66(6):666–676. [http://dx.doi.org/10.1001/archgenpsychiatry.2009.41]. [PMID: 19487632]. [PMC free article] [PubMed] [Google Scholar]

134. Mamede M., Ishizu K., Ueda M., Mukai T., Iida Y., Kawashima H., f*ckuyama H., Togashi K., Saji H. Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA SPECT study. J. Nucl. Med. 2007;48(11):1829–1835. [http://dx.doi.org/10.2967/jnumed.107.043471]. [PMID: 17942810]. [PubMed] [Google Scholar]

135. Stein E.A., Pankiewicz J., Harsch H.H., Cho J.K., Fuller S.A., Hoffmann R.G., Hawkins M., Rao S.M., Bandettini P.A., Bloom A.S. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am. J. Psychiatry. 1998;155(8):1009–1015. [http://dx.doi.org/10.1176/ajp.155.8.1009]. [PMID: 9699686]. [PubMed] [Google Scholar]

136. Giessing C., Thiel C.M., Rösler F., Fink G.R. The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability. Neuroscience. 2006;137(3):853–864. [http://dx.doi.org/10.1016/j.neuroscience.2005.10.005]. [PMID: 16309846]. [PubMed] [Google Scholar]

137. Thiel C.M., Fink G.R. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Neuroscience. 2008;152(2):381–390. [http://dx.doi.org/10.1016/j.neuroscience.2007.10.061]. [PMID: 18272290]. [PubMed] [Google Scholar]

138. Vossel S., Thiel C.M., Fink G.R. Behavioral and neural effects of nicotine on visuospatial at-tentional reorienting in non-smoking subjects. Neuropsychopharmacology. 2008;33(4):731–738. [http://dx.doi.org/10.1038/sj.npp.1301469]. [PubMed] [Google Scholar]

139. Lerman C., Gu H., Loughead J., Ruparel K., Yang Y., Stein E.A. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry. 2014;71(5):523–530. [http://dx.doi.org/10.1001/jamapsychiatry. 2013.4091]. [PMID: 24622915]. [PMC free article] [PubMed] [Google Scholar]

140. Patterson F. Working memory deficits predict short-term smoking resumption following brief abstinence. Drug Alcohol Depend. 2010;106(1):61–64. [PMID: 19733449]. [PMC free article] [PubMed] [Google Scholar]

141. Powell J., Dawkins L., West R., Powell J., Pickering A. Relapse to smoking during unaided cessation: clinical, cognitive and motivational predictors. Psychopharmacology (Berl.) 2010;212(4):537–549. [http://dx.doi.org/10.1007/s00213-010-1975-8]. [PMID: 20703450]. [PubMed] [Google Scholar]

142. Waters A.J., Shiffman S., Sayette M.A., Paty J.A., Gwaltney C.J., Balabanis M.H. Attentional bias predicts outcome in smoking cessation. Health Psychol. 2003;22(4):378–387. [http://dx.doi.org/10.1037/0278-6133.22.4.378]. [PMID: 12940394]. [PMC free article] [PubMed] [Google Scholar]

143. Janes A.C., Pizzagalli D.A., Richardt S. deB Frederick, B.; Chuzi, S.; Pachas, G.; Culhane, M.A.; Holmes, A.J.; Fava, M.; Evins, A.E.; Kaufman, M.J. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol. Psychiatry. 2010;67(8):722–729. [http://dx.doi.org/10.1016/j.biopsych.2009.12.034]. [PMID: 20172508]. [PMC free article] [PubMed] [Google Scholar]

144. Loughead J., Falcone M., Wileyto E.P., Albelda B., Audrain-McGovern J., Cao W., Kurtz M.M., Gur R.C., Lerman C. Can brain games help smokers quit?: Results of a randomized clinical trial. Drug Alcohol Depend. 2016;168:112–118. [http://dx.doi.org/10.1016/j.drugalcdep.2016.08.621]. [PMID: 27635998]. [PubMed] [Google Scholar]

145. Patterson F., Jepson C., Strasser A.A., Loughead J., Perkins K.A., Gur R.C., Frey J.M., Siegel S., Lerman C. Varenicline improves mood and cognition during smoking abstinence. Biol. Psychiatry. 2009;65(2):144–149. [http://dx.doi.org/10.1016/j.biopsych. 2008.08.028]. [PMID: 18842256]. [PMC free article] [PubMed] [Google Scholar]

146. Ashare R.L., McKee S.A. Effects of varenicline and bupropion on cognitive processes among nicotine-deprived smokers. Exp. Clin. Psychopharmacol. 2012;20(1):63–70. [http://dx.doi.org/10.1037/ a0025594]. [PMID: 21942262]. [PMC free article] [PubMed] [Google Scholar]

147. Rhodes J.D., Hawk L.W., Jr, Ashare R.L., Schlienz N.J., Mahoney M.C. The effects of varenicline on attention and inhibitory control among treatment-seeking smokers. Psychopharmacology (Berl.) 2012;223(2):131–138. [http://dx.doi.org/10.1007/s00213-012-2700-6]. [PMID: 22526531]. [PubMed] [Google Scholar]

148. Austin A.J., Duka T., Rusted J., Jackson A. Effect of varenicline on aspects of inhibitory control in smokers. Psychopharmacology (Berl.) 2014;231(18):3771–3785. [http://dx.doi.org/10.1007/ s00213-014-3512-7]. [PMID: 24652107]. [PubMed] [Google Scholar]

149. Sofuoglu M., Mooney M. Cholinergic functioning in stimulant addiction: implications for medications development. CNS Drugs. 2009;23(11):939–952. [http://dx.doi.org/10.2165/11310920-000000000-00000]. [PMID: 19845415]. [PMC free article] [PubMed] [Google Scholar]

150. Sofuoglu M., Herman A.I., Li Y., Waters A.J. Galantamine attenuates some of the subjective effects of intravenous nicotine and improves performance on a Go No-Go task in abstinent cigarette smokers: a preliminary report. Psychopharmacology (Berl.) 2012;224(3):413–420. [http://dx.doi.org/10.1007/s00213-012-2763-4]. [PMID: 22700039]. [PMC free article] [PubMed] [Google Scholar]

151. Ashare R.L., Ray R., Lerman C., Strasser A.A. Cognitive effects of the acetylcholinesterase inhibitor, donepezil, in healthy, non-treatment seeking smokers: a pilot feasibility study. Drug Alcohol Depend. 2012;126(1-2):263–267. [http://dx.doi.org/10.1016/ j.drugalcdep.2012.04.019]. [PMID: 22595038]. [PMC free article] [PubMed] [Google Scholar]

152. Falcone M., Bernardo L., Ashare R.L., Hamilton R., Faseyitan O., McKee S.A., Loughead J., Lerman C. Transcranial direct current brain stimulation increases ability to resist smoking. Brain Stimul. 2016;9(2):191–196. [http://dx.doi.org/10.1016/j.brs.2015. 10.004]. [PMID: 26572280]. [PMC free article] [PubMed] [Google Scholar]

153. Fecteau S., Agosta S., Hone-Blanchet A., Fregni F., Boggio P., Ciraulo D., Pascual-Leone A. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 2014;140:78–84. [http://dx.doi.org/10.1016/j.drugalcdep.2014.03. 036]. [PMID: 24814566]. [PMC free article] [PubMed] [Google Scholar]

154. Xu J., Fregni F., Brody A.L., Rahman A.S. Transcranial direct current stimulation reduces negative affect but not cigarette craving in overnight abstinent smokers. Front. Psychiatry. 2013;4(112):112. [PMID: 24065930]. [PMC free article] [PubMed] [Google Scholar]

155. Field M., Duka T., Tyler E., Schoenmakers T. Attentional bias modification in tobacco smokers. Nicotine Tob. Res. 2009;11(7):812–822. [http://dx.doi.org/10.1093/ntr/ntp067]. [PMID: 19474181]. [PubMed] [Google Scholar]

156. Lopes F.M., Pires A.V., Bizarro L. Attentional bias modification in smokers trying to quit: a longitudinal study about the effects of number of sessions. J. Subst. Abuse Treat. 2014;47(1):50–57. [http://dx.doi.org/10.1016/j.jsat.2014.03.002]. [PMID: 24666812]. [PubMed] [Google Scholar]

Cognitive Effects of Nicotine: Recent Progress (2024)
Top Articles
Latest Posts
Article information

Author: Rueben Jacobs

Last Updated:

Views: 6198

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.