17.6: Corrosion (2024)

Table of Contents
Summary Glossary FAQs
  1. Last updated
  2. Save as PDF
  • Page ID
    38308
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • Define corrosion
    • List some of the methods used to prevent or slow corrosion

    Corrosion is usually defined as the degradation of metals due to an electrochemical process. The formation of rust on iron, tarnish on silver, and the blue-green patina that develops on copper are all examples of corrosion. The total cost of corrosion in the United States is significant, with estimates in excess of half a trillion dollars a year.

    Changing Colors

    The Statue of Liberty is a landmark every American recognizes. The Statue of Liberty is easily identified by its height, stance, and unique blue-green color. When this statue was first delivered from France, its appearance was not green. It was brown, the color of its copper “skin.” So how did the Statue of Liberty change colors? The change in appearance was a direct result of corrosion. The copper that is the primary component of the statue slowly underwent oxidation from the air. The oxidation-reduction reactions of copper metal in the environment occur in several steps. Copper metal is oxidized to copper(I) oxide (\(\ce{Cu_2O}\)), which is red, and then to copper(II) oxide, which is black.

    \[\ce{2Cu(s)} +\ce{1/2O2(g)} \rightarrow \underset{\text{red}}{\ce{Cu2O(s)}} \nonumber \]

    \[\ce{Cu2O(s)} +\ce{1/2O2(g)} \rightarrow \underset{\text{black}}{\ce{2CuO(s)}} \nonumber \]

    Coal, which was often high in sulfur, was burned extensively in the early part of the last century. As a result, sulfur trioxide, carbon dioxide, and water all reacted with the \(\ce{CuO}\).

    \[\ce{2CuO(s)}+\ce{CO2(g)} + \ce{H2O(l)} \rightarrow \underset{\text{green}}{\ce{Cu_2CO3(OH)2(s)}} \nonumber \]

    \[\ce{3CuO(s)}+\ce{2CO2(g)}+\ce{H2O(l)} \rightarrow \underset{\text{blue}}{\ce{Cu_2(CO_3)_2(OH)2(s)}} \nonumber \]

    \[\ce{4CuO(s)}+\ce{SO3(g)}+\ce{3H2O(l)} \rightarrow \underset{\text{green}}{\ce{Cu_4SO_4(OH)6(s)}} \nonumber \]

    These three compounds are responsible for the characteristic blue-green patina seen today. Fortunately, formation of the patina created a protective layer on the surface, preventing further corrosion of the copper skin. The formation of the protective layer is a form of passivation, which is discussed further in a later chapter.

    17.6: Corrosion (2)

    Perhaps the most familiar example of corrosion is the formation of rust on iron. Iron will rust when it is exposed to oxygen and water. The main steps in the rusting of iron appear to involve the following. Once exposed to the atmosphere, iron rapidly oxidizes.

    \[\textrm{anode: }\ce{Fe}_{(s)} \rightarrow \ce{Fe^{2+}}_{(aq)}+\ce{2e^-}\;\;\; E^\circ_{\ce{Fe^{2+}/Fe}}=\mathrm{−0.44\: V} \nonumber \]

    The electrons reduce oxygen in the air in acidic solutions.

    \[\textrm{cathode: }\ce{O}_{2(g)}+\ce{4H^+}_{(aq)}+\ce{4e^-} \rightarrow \ce{2H_2O}_{(l)}\;\; E^\circ_{\ce{O_2/O_2}}=\mathrm{+1.23\; V} \nonumber \]

    \[\textrm{overall: }\ce{2Fe}_{(s)}+\ce{O}_{2(g)}+\ce{4H^+}_{(aq)} \rightarrow \ce{2Fe^{2+}}_{(aq)}+\ce{2H_2O}_{(l)} \;\;\;E^\circ_\ce{cell}=\mathrm{+1.67\; V} \nonumber \]

    What we call rust is hydrated iron(III) oxide, which forms when iron(II) ions react further with oxygen.

    \[\ce{4Fe^{2+}}_{(aq)}+\ce{O}_{2(g)}+(4+2x)\ce{H_2O}_{(l)} \rightarrow \ce{2Fe_2O_3} \cdot x\ce{H_2O}_{(s)}+\ce{8H^+}_{(aq)} \nonumber \]

    The number of water molecules is variable, so it is represented by x. Unlike the patina on copper, the formation of rust does not create a protective layer and so corrosion of the iron continues as the rust flakes off and exposes fresh iron to the atmosphere.

    17.6: Corrosion (3)

    One way to keep iron from corroding is to keep it painted. The layer of paint prevents the water and oxygen necessary for rust formation from coming into contact with the iron. As long as the paint remains intact, the iron is protected from corrosion.

    Other strategies include alloying the iron with other metals. For example, stainless steel is mostly iron with a bit of chromium. The chromium tends to collect near the surface, where it forms an oxide layer that protects the iron.

    Zinc-plated or galvanized iron uses a different strategy. Zinc is more easily oxidized than iron because zinc has a lower reduction potential. Since zinc has a lower reduction potential, it is a more active metal. Thus, even if the zinc coating is scratched, the zinc will still oxidize before the iron. This suggests that this approach should work with other active metals.

    17.6: Corrosion (4)

    Another important way to protect metal is to make it the cathode in a galvanic cell. This is cathodic protection and can be used for metals other than just iron. For example, the rusting of underground iron storage tanks and pipes can be prevented or greatly reduced by connecting them to a more active metal such as zinc or magnesium. This is also used to protect the metal parts in water heaters. The more active metals (lower reduction potential) are called sacrificial anodes because as they get used up as they corrode (oxidize) at the anode. The metal being protected serves as the cathode, and so does not oxidize (corrode). When the anodes are properly monitored and periodically replaced, the useful lifetime of the iron storage tank can be greatly extended.

    Summary

    Corrosion is the degradation of a metal caused by an electrochemical process. Large sums of money are spent each year repairing the effects of, or preventing, corrosion. Some metals, such as aluminum and copper, produce a protective layer when they corrode in air. The thin layer that forms on the surface of the metal prevents oxygen from coming into contact with more of the metal atoms and thus “protects” the remaining metal from further corrosion. Iron corrodes (forms rust) when exposed to water and oxygen. The rust that forms on iron metal flakes off, exposing fresh metal, which also corrodes. One way to prevent, or slow, corrosion is by coating the metal. Coating prevents water and oxygen from contacting the metal. Paint or other coatings will slow corrosion, but they are not effective once scratched. Zinc-plated or galvanized iron exploits the fact that zinc is more likely to oxidize than iron. As long as the coating remains, even if scratched, the zinc will oxidize before the iron. Another method for protecting metals is cathodic protection. In this method, an easily oxidized and inexpensive metal, often zinc or magnesium (the sacrificial anode), is electrically connected to the metal that must be protected. The more active metal is the sacrificial anode, and is the anode in a galvanic cell. The “protected” metal is the cathode, and remains unoxidized. One advantage of cathodic protection is that the sacrificial anode can be monitored and replaced if needed.

    Glossary

    cathodic protection
    method of protecting metal by using a sacrificial anode and effectively making the metal that needs protecting the cathode, thus preventing its oxidation
    corrosion
    degradation of metal through an electrochemical process
    galvanized iron
    method for protecting iron by covering it with zinc, which will oxidize before the iron; zinc-plated iron
    sacrificial anode
    more active, inexpensive metal used as the anode in cathodic protection; frequently made from magnesium or zinc
    17.6: Corrosion (2024)

    FAQs

    What are the levels of corrosion? ›

    Corrosion rates by category
    Corrosivity category and riskLow carbon steel Thickness Loss (µm)*
    C1 very low≤ 1.3
    C2 low> 1.3 to 25
    C3 medium>25 to 50
    C4 high> 50 to 80
    4 more rows

    What are the four 4 main types of corrosion? ›

    In certain environments, metals may be exposed to various types of local corrosion including pitting, crevice, intergranular, stress, and galvanic corrosion. Even a single alloy can suffer from more than one form of corrosion depending on its exposure to different environments at different points within a system.

    What is corrosion rating? ›

    The corrosion rate is defined as the loss in thickness of rebars per year, and it depends on the area of the corroding rebar and mass loss rate (Pradhan & Bhattacharjee, 2009). From: The Rise of Smart Cities, 2022.

    What is level 3 corrosion? ›

    • Level 3 Corrosion. Corrosion occurring during the first or subsequent accomplishment of a corrosion inspection task that the operator determines to be an urgent airworthiness concern. The CPCP requires the operator to maintain the aircraft to Level 1 Corrosion or better.

    What is corrosion 7? ›

    Corrosion is the process by which a metal surface is attacked by a certain substance such as air or water. The most common occurence of corrosion is the rusting of iron by air and moisture to form a reddish-brown layerof triferric tetraoxide(Fe3O4)

    How corrosion resistant is 18 8? ›

    The 18-8 has the best corrosion resistance to 400 series and is magnetically hardenable by cold working. This ideal stainless steel has a strong resistance (can withstand harsh environments), and it is also easy to fabricate.

    What is corrosion Grade 12? ›

    Corrosion: Corrosion is the process of slowly eating up metals by gas and water vapours present in the atmosphere due to the formation of certain compounds like oxide, sulphides, carbonate, etc. Rust: Corrosion of iron is known as rusting.

    What are the 7 types of corrosion? ›

    There are many different types of corrosion that are visible to the naked eye: uniform corrosion, pitting, crevice corrosion, filiform corrosion, galvanic corrosion, environmental cracking, and fretting corrosion, to name a few.

    What are 10 types of corrosion? ›

    Some of the below forms of corrosion are unique, but all of them are more or less interrelated.
    • Uniform corrosion. ...
    • Galvanic corrosion. ...
    • Concentration cells. ...
    • Crevice corrosion. ...
    • Pitting corrosion. ...
    • Selective corrosion. ...
    • Erosion corrosion. ...
    • Cavitation corrosion.
    Jun 14, 2023

    How do you identify corrosion? ›

    Some early signs of corrosion include discoloration, pitting, roughness, and flaking of the surface. You may also notice a powdery residue or rust-coloured stains on the affected area. It's important to address these signs promptly to prevent further damage.

    How much corrosion is acceptable? ›

    The general practice is to allow 1/8 in, or 3.2 mm minimum corrosion allowance.

    What is a normal corrosion rate? ›

    In an open water system a corrosion rate of around 1 MPY is normal. Having corrosion rate of around 10, you should take action. Corrosion rates of 20 MPY and above, you should be concerned, as the corrosion is „eating“ the metal rather fast.

    What is the general acceptable corrosion rate? ›

    MaterialEffect
    MetalsGeneral corrosion rate< 0.1 mm/year
    0.1 - 1.0 mm/year
    > 1.0 mm/year
    PlasticsNo important physical or chemical attacks.
    8 more rows

    What are the 3 causes of corrosion of metals? ›

    Metal corrodes when it reacts with another substance such as oxygen, hydrogen, an electrical current or even dirt and bacteria. Corrosion can also happen when metals like steel are placed under too much stress causing the material to crack.

    What are the three 3 requirements for corrosion to occur? ›

    ... are four requirements for corrosion: an anode (where oxidation of the metal occurs), a cathode (where reduction of a different species occurs), an electrolytic path for ionic conduction between the two reaction sites, and an electrical path for electron conduction between the reaction sites.

    What are the 3 serious forms of corrosion on aluminum? ›

    The forms of corrosion on aluminum and its alloys can be any of the following types: Uniform corrosion. Galvanic corrosion. Pitting corrosion.

    What is the most common type of corrosion? ›

    General corrosion, also known as uniform corrosion, is the most common type of corrosion. While general corrosion is the most common type of corrosion, it is not the most serious form because it is typically easy to predict.

    Top Articles
    Latest Posts
    Article information

    Author: Kimberely Baumbach CPA

    Last Updated:

    Views: 6708

    Rating: 4 / 5 (41 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Kimberely Baumbach CPA

    Birthday: 1996-01-14

    Address: 8381 Boyce Course, Imeldachester, ND 74681

    Phone: +3571286597580

    Job: Product Banking Analyst

    Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

    Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.