Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases (2024)

1. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Progress in Lipid Research. 2003;42(4):318–343. doi:10.1016/S0163-7827(03)00014-6. [PubMed] [CrossRef] [Google Scholar]

2. Halliwell B., Gutteridge J. M. Free Radicals in Biology and Medicine, Chapter 2. 3rd. New York, NY, USA: Oxford Science Publications; 1999. Oxidative stress: adaptation, damage, repair and death; pp. 36–104. [Google Scholar]

3. Davis M. D., Kaufman S., Milstien S. The auto‐oxidation of tetrahydrobiopterin. European Journal of Biochemistry. 1988;173(2):345–351. doi:10.1111/j.1432-1033.1988.tb14004.x. [PubMed] [CrossRef] [Google Scholar]

5. Szklarczyk D., Morris J. H., Cook H., et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research. 2017;45(D1):D362–D368. doi:10.1093/nar/gkw937. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Kanehisa M., Sato Y., Furumichi M., Morishima K., Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Research. 2019;47(D1):D590–D595. doi:10.1093/nar/gky962. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research. 2017;45(D1):D353–D361. doi:10.1093/nar/gkw1092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 2000;28(1):27–30. doi:10.1093/nar/28.1.27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Von Ossowski I., Hausner G., Loewen P. C. Molecular evolutionary analysis based on the amino acid sequence of catalase. Journal of Molecular Evolution. 1993;37(1):71–76. doi:10.1007/BF00170464. [PubMed] [CrossRef] [Google Scholar]

10. Deisseroth A., Dounce A. L. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews. 1970;50(3):319–375. doi:10.1152/physrev.1970.50.3.319. [PubMed] [CrossRef] [Google Scholar]

11. Ivancich A., Jouve H. M., Sartor B., Gaillard J. EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates. Biochemistry. 1997;36(31):9356–9364. doi:10.1021/bi970886s. [PubMed] [CrossRef] [Google Scholar]

12. Lardinois O. M. Reactions of bovine liver catalase with superoxide radicals and hydrogen peroxide. Free Radical Research. 1995;22(3):251–274. doi:10.3109/10715769509147544. [PubMed] [CrossRef] [Google Scholar]

13. Sumner J. B., Dounce A. L. Crystalline catalase. Journal of Biochemistry. 1937;121:417–424. [Google Scholar]

14. Herbert D., Pinsent J. Crystalline bacterial catalase. Biochemical Journal. 1948;43(2):193–202. doi:10.1042/bj0430193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Halliwell B., Gutteridge J. M. C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal. 1984;219(1):1–14. doi:10.1042/bj2190001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Yabuki M., Kariya S., Ishisaka R., et al. Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu, Zn-superoxide dismutase and catalase. Free Radical Biology & Medicine. 1999;26(3-4):325–332. doi:10.1016/S0891-5849(98)00203-2. [PubMed] [CrossRef] [Google Scholar]

17. Islam K. N., Kayanoki Y., Kaneto H., et al. TGF-β1 triggers oxidative modifications and enhances apoptosis in Hit cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radical Biology & Medicine. 1997;22(6):1007–1017. doi:10.1016/S0891-5849(96)00493-5. [PubMed] [CrossRef] [Google Scholar]

18. Sandstrom P. A., Buttke T. M. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(10):4708–4712. doi:10.1073/pnas.90.10.4708. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Kirkman H. N., Gaetani G. F. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proceedings of the National Academy of Sciences of the United States of America. 1984;81(14):4343–4347. doi:10.1073/pnas.81.14.4343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Putnam C. D., Arvai A. S., Bourne Y., Tainer J. A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology. 2000;296(1):295–309. doi:10.1006/jmbi.1999.3458. [PubMed] [CrossRef] [Google Scholar]

21. Ko T. P., Safo M. K., Musayev F. N., et al. Structure of human erythrocyte catalase. Acta Crystallographica Section D Biological Crystallography. 2000;56(2):241–245. doi:10.1107/S0907444999015930. [PubMed] [CrossRef] [Google Scholar]

22. Safo M. K., Musayev F. N., Wu S. H., Abraham D. J., Ko T. P. Structure of tetragonal crystals of human erythrocyte catalase. Acta Crystallographica Section D Biological Crystallography. 2001;57(1):1–7. doi:10.1107/s0907444900013767. [PubMed] [CrossRef] [Google Scholar]

23. Kirkman H. N., Rolfo M., Ferraris A. M., Gaetani G. F. Mechanisms of protection of catalase by NADPH. Journal of Biological Chemistry. 1999;274(20):13908–13914. doi:10.1074/jbc.274.20.13908. [PubMed] [CrossRef] [Google Scholar]

24. Góth L. Two cases of acatalasemia in Hungary. Clinica Chimica Acta. 1992;207(1-2):155–158. doi:10.1016/0009-8981(92)90160-R. [PubMed] [CrossRef] [Google Scholar]

25. Al-Abrash A. S., Al-Quobaili F. A., Al-Akhras G. N. Catalase evaluation in different human diseases associated with oxidative stress. Saudi Medical Journal. 2000;21(9):826–830. [PubMed] [Google Scholar]

26. Habib L. K., Lee M. T. C., Yang J. Inhibitors of catalase-amyloid interactions protect cells from β-amyloid induced oxidative stress and toxicity. Journal of Biological Chemistry. 2010;285(50):38933–38943. doi:10.1074/jbc.M110.132860. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Ogata M. Acatalasemia. Human Genetics. 1991;86(4):331–340. doi:10.1007/bf00201829. [PubMed] [CrossRef] [Google Scholar]

28. Gaetani G. F., Ferraris A. M., Roflo M., Mangerini R., Arena S., Kirkman H. N. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood. 1996;87(4):1595–1599. [PubMed] [Google Scholar]

29. Mueller S., Riedel H. D., Stremmel W. Direct evidence for catalase as the predominant H2O2 removing enzyme in human erythrocytes. Blood. 1997;90(12):4973–4978. [PubMed] [Google Scholar]

30. Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46(11):1733–1742. doi:10.2337/diab.46.11.1733. [PubMed] [CrossRef] [Google Scholar]

31. Tiedge M., Lortz S., Munday R., Lenzen S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes. 1998;47(10):1578–1585. doi:10.2337/diabetes.47.10.1578. [PubMed] [CrossRef] [Google Scholar]

32. Góth L., Vitai M. Hypocatalasemia in hospital patients. Clinical Chemistry. 1996;42(2):341–342. [PubMed] [Google Scholar]

33. Góth L., Vitai M. Polymorphism of 5′ of the catalase gene in Hungarian acatalasemia and hypocatalasemia. Electrophoresis. 1997;18(7):1105–1108. doi:10.1002/elps.1150180714. [PubMed] [CrossRef] [Google Scholar]

34. Park H. H., Ha E., Uhm Y. K., et al. Association study between catalase gene polymorphisms and the susceptibility to vitiligo in Korean population. Experimental Dermatology. 2006;15(5):377–380. doi:10.1111/j.0906-6705.2006.00423.x. [PubMed] [CrossRef] [Google Scholar]

35. Kodydkova J., Vavroa L., Kocik M., Zak A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biologica. 2014;60(4):153–167. [PubMed] [Google Scholar]

36. Chistiakov D. A., Savost'anov K. V., Turakulov R. I., et al. A new type 1 diabetes susceptibility locus containing the catalase gene (chromosome 11p13) in a Russian population. Diabetes/Metabolism Research and Reviews. 2004;20(3):219–224. doi:10.1002/dmrr.442. [PubMed] [CrossRef] [Google Scholar]

37. Quick S. K., Shields P. G., Nie J., et al. Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiology Biomarkers & Prevention. 2008;17(5):1082–1087. doi:10.1158/1055-9965.EPI-07-2755. [PubMed] [CrossRef] [Google Scholar]

38. Ahn J., Gammon M. D., Santella R. M., et al. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. American Journal of Epidemiology. 2005;162(10):943–952. doi:10.1093/aje/kwi306. [PubMed] [CrossRef] [Google Scholar]

39. Forsberg L., Lyrenäs L., Morgenstern R., de Faire U. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radical Biology & Medicine. 2001;30(5):500–505. doi:10.1016/S0891-5849(00)00487-1. [PubMed] [CrossRef] [Google Scholar]

40. Tarnai I., Csordás M., Sükei E., Shemirani A. H., Káplár M., Góth L. Effect of C111T polymorphism in exon 9 of the catalase gene on blood catalase activity in different types of diabetes mellitus. Free Radical Research. 2007;41(7):806–811. doi:10.1080/10715760701381778. [PubMed] [CrossRef] [Google Scholar]

41. Jiang Z., Akey J. M., Shi J., et al. A polymorphism in the promoter region of catalase is associated with blood pressure levels. Human Genetics. 2001;109(1):95–98. doi:10.1007/s004390100553. [PubMed] [CrossRef] [Google Scholar]

42. Watanabe Y., Metoki H., Ohkubo T., et al. Accumulation of common polymorphisms is associated with development of hypertension: a 12-year follow-up from the Ohasama study. Hypertension Research. 2010;33(2):129–134. doi:10.1038/hr.2009.193. [PubMed] [CrossRef] [Google Scholar]

43. Fabre E. E., Raynaud-Simon A., Golmard J. L., et al. Gene polymorphisms of oxidative stress enzymes: prediction of elderly renutrition. The American Journal of Clinical Nutrition. 2008;87(5):1504–1512. doi:10.1093/ajcn/87.5.1504. [PubMed] [CrossRef] [Google Scholar]

44. Liu L., Li C., Gao J., et al. Promoter variant in the catalase gene is associated with vitiligo in Chinese people. Journal of Investigative Dermatology. 2010;130(11):2647–2653. doi:10.1038/jid.2010.192. [PubMed] [CrossRef] [Google Scholar]

45. Kim T. H., Hong J. M., Oh B., et al. Genetic association study of polymorphisms in the catalase gene with the risk of osteonecrosis of the femoral head in the Korean population. Osteoarthritis and Cartilage. 2008;16(9):1060–1066. doi:10.1016/j.joca.2008.02.004. [PubMed] [CrossRef] [Google Scholar]

46. Casp C. B., She J. X., McCormack W. T. Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Research. 2002;15(1):62–66. doi:10.1034/j.1600-0749.2002.00057.x. [PubMed] [CrossRef] [Google Scholar]

47. Gavalas N. G., Akhtar S., Gawkrodger D. J., Watson P. F., Weetman A. P., Kemp E. H. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochemical and Biophysical Research Communications. 2006;345(4):1586–1591. doi:10.1016/j.bbrc.2006.05.063. [PubMed] [CrossRef] [Google Scholar]

48. Rolo A. P., Palmeira C. M. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology. 2006;212(2):167–178. doi:10.1016/j.taap.2006.01.003. [PubMed] [CrossRef] [Google Scholar]

49. International Diabetes Federation Diabetes Atlas. IDF. 2017. 8th edition, January 2017, https://www.diabetesatlas.org.

51. Chiang J. L., Kirkman M. S., Laffel L. M., Peters A. L., Type 1 Diabetes Sourcebook Authors Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care. 2014;37(7):2034–2054. doi:10.2337/dc14-1140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Laugesen E., Østergaard J. A., Leslie R. D. G., the Danish Diabetes Academy Workshop and Workshop Speakers Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabetic Medicine. 2015;32(7):843–852. doi:10.1111/dme.12700. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Juneja R., Hirsch I. B., Naik R. G., Brooks-Worrell B. M., Greenbaum C. J., Palmer J. P. Islet cell antibodies and glutamic acid decarboxylase antibodies, but not the clinical phenotype, help to identify type 1[frac12] diabetes in patients presenting with type 2 diabetes. Metabolism. 2001;50(9):1008–1013. doi:10.1053/meta.2001.25654. [PubMed] [CrossRef] [Google Scholar]

54. Murata M., Imada M., Inoue S., Kawanishi S. Metal-mediated DNA damage induced by diabetogenic alloxan in the presence of NADH. Free Radical Biology & Medicine. 1998;25(4-5):586–595. doi:10.1016/S0891-5849(98)00091-4. [PubMed] [CrossRef] [Google Scholar]

55. Jorns A., Tiedge M., Lenzen S., Munday R. Effect of superoxide dismutase, catalase, chelating agents, and free radical scavengers on the toxicity of alloxan to isolated pancreatic islets in vitro. Free Radical Biology & Medicine. 1999;26(9-10):1300–1304. doi:10.1016/S0891-5849(98)00325-6. [PubMed] [CrossRef] [Google Scholar]

56. Msolly A. M., Kassab A. S. Hydrogen peroxide: an oxidant stress indicator in type 2 diabetes mellitus. Journal of Cardiovascular Disease. 2013;1(2):48–52. [Google Scholar]

57. Grankvist K., Marklund S. L., Taljedal I. B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochemical Journal. 1981;199(2):393–398. doi:10.1042/bj1990393. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. American Diabetes Association. Standards of medical care in diabetes—2016: summary of revisions. Diabetes Care. 2016;39(Supplement 1):S4–S5. doi:10.2337/dc16-s003. [PubMed] [CrossRef] [Google Scholar]

59. Ewald N., Kaufmann C., Raspe A., Kloer H. U., Bretzel R. G., Hardt P. D. Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c) Diabetes/Metabolism Research and Reviews. 2012;28(4):338–342. doi:10.1002/dmrr.2260. [PubMed] [CrossRef] [Google Scholar]

60. Bhattamisra S. K., Siang T. C., Rong C. Y., et al. Type-3c diabetes mellitus, diabetes of exocrine pancreas - an update. Current Diabetes Reviews. 2019;15(5):382–394. doi:10.2174/1573399815666190115145702. [PubMed] [CrossRef] [Google Scholar]

61. Sasikala M., Talukdar R., Pavan kumar P., et al. β-Cell dysfunction in chronic pancreatitis. Digestive Diseases and Sciences. 2012;57(7):1764–1772. doi:10.1007/s10620-012-2086-7. [PubMed] [CrossRef] [Google Scholar]

62. Donath M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nature Reviews Drug Discovery. 2014;13(6):465–476. doi:10.1038/nrd4275. [PubMed] [CrossRef] [Google Scholar]

63. Fujimoto K., Polonsky K. S. Pdx1 and other factors that regulate pancreatic β-cell survival. Diabetes, Obesity and Metabolism. 2009;11(Suppl 4):30–37. doi:10.1111/j.1463-1326.2009.01121.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Li Q., Engelhardt J. F. Interleukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. Journal of Biological Chemistry. 2006;281(3):1495–1505. doi:10.1074/jbc.M511153200. [PubMed] [CrossRef] [Google Scholar]

65. Veal E., Day A. Hydrogen peroxide as a signaling molecule. Antioxidants & Redox Signaling. 2011;15(1):147–151. doi:10.1089/ars.2011.3968. [PubMed] [CrossRef] [Google Scholar]

66. Meszaros I., Góth L., Vattay G. The value of serum catalase activity determinations in acute pancreatitis. The American Journal of Digestive Diseases. 1973;18(12):1035–1041. doi:10.1007/BF01076518. [PubMed] [CrossRef] [Google Scholar]

67. Kim C. Gestational diabetes: risks, management, and treatment options. International Journal of Women's Health. 2010;2010(2):339–351. doi:10.2147/ijwh.s13333. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. American Diabetes Association. Gestational diabetes mellitus. Diabetes Care. 2004;27(Supplement 1):s88–s90. doi:10.2337/diacare.27.2007.S88. [PubMed] [CrossRef] [Google Scholar]

69. Simeoni U., Barker D. J. Offspring of diabetic pregnancy: long-term outcomes. Seminars in Fetal and Neonatal Medicine. 2009;14(2):119–124. doi:10.1016/j.siny.2009.01.002. [PubMed] [CrossRef] [Google Scholar]

70. Simeoni U., Ligi I., Buffat C., Boubred F. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues. Pediatric Nephrology. 2011;26(4):493–508. doi:10.1007/s00467-010-1648-1. [PubMed] [CrossRef] [Google Scholar]

71. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reproductive Toxicology. 2007;24(1):31–41. doi:10.1016/j.reprotox.2007.04.004. [PubMed] [CrossRef] [Google Scholar]

72. Góth L., Toth Z., Tarnai I., Berces M., Torok P., Bigler W. N. Blood catalase activity in gestational diabetes is decreased but not associated with pregnancy complications. Clinical Chemistry. 2005;51(12):2401–2404. doi:10.1373/clinchem.2005.055517. [PubMed] [CrossRef] [Google Scholar]

73. Lekharu R., Predhan R., Sharma R., Sharma D. A study of lipid peroxidation and antioxidant enzymes in normal pregnancy. GCSMC Journal of Medical Science. 2014;3(1):55–56. [Google Scholar]

74. Lappas M., Mittion A., Permezel M. In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. Journal of Endocrinology. 2010;204(1):75–84. doi:10.1677/joe-09-0321. [PubMed] [CrossRef] [Google Scholar]

75. Ivashchenko O., van Veldhoven P. P., Brees C., Ho Y.-S., Terlecky S. R., Fransen M. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Molecular Biology of the Cell. 2011;22(9):1440–1451. doi:10.1091/mbc.e10-11-0919. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Góth L. Catalase deficiency and type 2 diabetes. Diabetes Care. 2008;31(12, article e93) doi:10.2337/dc08-1607. [PubMed] [CrossRef] [Google Scholar]

77. Woo H. A., Yim S. H., Shin D. H., Kang D., Yu D. Y., Rhee S. G. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling. Cell. 2010;140(4):517–528. doi:10.1016/j.cell.2010.01.009. [PubMed] [CrossRef] [Google Scholar]

78. Rhee S. G. Cell signaling: H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–1883. doi:10.1126/science.1130481. [PubMed] [CrossRef] [Google Scholar]

79. Góth L., Eaton J. W. Hereditary catalase deficiencies and increased risk of diabetes. The Lancet. 2000;356(9244):1820–1821. doi:10.1016/S0140-6736(00)03238-4. [PubMed] [CrossRef] [Google Scholar]

80. Heales S. J. Catalase deficiency, diabetes and mitochondrial function. The Lancet. 2001;357(9252):p. 314. doi:10.1016/S0140-6736(05)71763-3. [PubMed] [CrossRef] [Google Scholar]

81. Fowler M. J. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2008;26(2):77–82. doi:10.2337/diaclin.26.2.77. [CrossRef] [Google Scholar]

82. Li J., Wang J. J., Zhang S. X. NADPH oxidase 4-derived H2O2 promotes aberrant retinal neovascularization via activation of VEGF receptor 2 pathway in oxygen-induced retinopathy. Journal of Diabetes Research. 2015;2015:13. doi:10.1155/2015/963289.963289 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Kowluru R. A., Chan P. S. Oxidative stress and diabetic retinopathy. Experimental Diabetes Research. 2007;2007:12. doi:10.1155/2007/43603.43603 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Serrander L., Cartier L., Bedard K., et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochemical Journal. 2007;406(1):105–114. doi:10.1042/BJ20061903. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Ellis E. A., Guberski D. L., Somogyi-Mann M., Grant M. B. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/WOR diabetic rat. Free Radical Biology & Medicine. 2000;28(1):91–101. doi:10.1016/S0891-5849(99)00216-6. [PubMed] [CrossRef] [Google Scholar]

86. Anderson R. E., Rapp L. M., Wiegand R. D. Lipid peroxidation and retinal degeneration. Current Eye Research. 1984;3(1):223–227. doi:10.3109/02713688408997203. [PubMed] [CrossRef] [Google Scholar]

87. Kowluru R. A., Tang J., Kern T. S. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50(8):1938–1942. doi:10.2337/diabetes.50.8.1938. [PubMed] [CrossRef] [Google Scholar]

88. Kowluru R. A. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. Acta Diabetologica. 2001;38(4):179–185. doi:10.1007/s592-001-8076-6. [PubMed] [CrossRef] [Google Scholar]

89. Kowluru R. A., Koppolu P. Termination of experimental galactosemia in rats, and progression of retinal metabolic abnormalities. Investigative Ophthalmology & Visual Science. 2002;43(10):3287–3291. [PubMed] [Google Scholar]

90. Kowluru R. A., Abbas S. N. Diabetes-induced mitochondrial dysfunction in the retina. Investigative Ophthalmology & Visual Science. 2003;44(12):5327–5334. doi:10.1167/iovs.03-0353. [PubMed] [CrossRef] [Google Scholar]

91. Ahlqvist E., Storm P., Käräjämäki A., et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. The Lancet Diabetes & Endocrinology. 2018;6(5):361–369. doi:10.1016/S2213-8587(18)30051-2. [PubMed] [CrossRef] [Google Scholar]

92. Markesbery W. R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology & Medicine. 1997;23(1):134–147. doi:10.1016/S0891-5849(96)00629-6. [PubMed] [CrossRef] [Google Scholar]

93. Hebert L. E., Weuve J., Scherr P. A., Evans D. A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80(19):1778–1783. doi:10.1212/WNL.0b013e31828726f5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Glenner G. G., Wong C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications. 1984;120(3):885–890. doi:10.1016/S0006-291X(84)80190-4. [PubMed] [CrossRef] [Google Scholar]

95. Masters C. L., Simms G., Weinman N. A., Multhaup G., McDonald B. L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America. 1985;82(12):4245–4249. doi:10.1073/pnas.82.12.4245. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Yankner B., Dawes L., Fisher S., Villa-Komaroff L., Oster-Granite M., Neve R. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science. 1989;245(4916):417–420. doi:10.1126/science.2474201. [PubMed] [CrossRef] [Google Scholar]

97. Pike C. J., Walencewicz A. J., Glabe C. G., Cotman C. W. In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Research. 1991;563(1-2):311–314. doi:10.1016/0006-8993(91)91553-D. [PubMed] [CrossRef] [Google Scholar]

98. Frautschy S. A., Baird A., Cole G. M. Effects of injected Alzheimer beta-amyloid cores in rat brain. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(19):8362–8366. doi:10.1073/pnas.88.19.8362. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Kowall N. W., Beal M. F., Busciglio J., Duffy L. K., Yankner B. A. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(16):7247–7251. doi:10.1073/pnas.88.16.7247. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Harris M. E., Hensley K., Butterfield D. A., Leedle R. A., Carney J. M. Direct evidence of oxidative injury produced by the Alzheimer's β-Amyloid peptide (1–40) in cultured hippocampal neurons. Experimental Neurology. 1995;131(2):193–202. doi:10.1016/0014-4886(95)90041-1. [PubMed] [CrossRef] [Google Scholar]

101. Howlett D. R., Jennings K. H., Lee D. C., et al. Aggregation state and neurotoxic properties of Alzheimer beta-amyloid peptide. Neurodegeneration. 1995;4(1):23–32. doi:10.1006/neur.1995.0003. [PubMed] [CrossRef] [Google Scholar]

102. Aksenov M. Y., Aksenova M. V., Harris M. E., Hensley K., Butterfield D. A., Carney J. M. Enhancement of β‐amyloid peptide Aβ(1–40)‐mediated neurotoxicity by glutamine synthetase. Journal of Neurochemistry. 1995;65(4):1899–1902. doi:10.1046/j.1471-4159.1995.65041899.x. [PubMed] [CrossRef] [Google Scholar]

103. Aksenov M. Y., Aksenova M. V., Butterfield D. A., Hensley K., Vigo-Pelfrey C., Carney J. M. Glutamine synthetase-induced enhancement of β-amyloid peptide Aβ(1-40) neurotoxicity accompanied by abrogation of fibril formation and Aβ fragmentation. Journal of Neurochemistry. 1996;66(5):2050–2056. doi:10.1046/j.1471-4159.1996.66052050.x. [PubMed] [CrossRef] [Google Scholar]

104. Aksenov M. Y., Aksenova M. V., Markesbery W. R., Butterfield D. A. Amyloid β-peptide(1–40)-mediated oxidative stress in cultured hippocampal neurons: protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA. Journal of Molecular Neuroscience. 1998;10(3):181–192. doi:10.1007/BF02761773. [PubMed] [CrossRef] [Google Scholar]

105. Varadarajan S., Yatin S., Kanski J., Jahanshahi F., Butterfield D. A. Methionine residue 35 is important in amyloid β-peptide-associated free radical oxidative stress. Brain Research Bulletin. 1999;50(2):133–141. doi:10.1016/S0361-9230(99)00093-3. [PubMed] [CrossRef] [Google Scholar]

106. Yatin S. M., Aksenov M., Butterfield D. A. The antioxidant vitamin E modulates amyloid β-peptide-induced creatine kinase inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer’s disease. Neurochemical Research. 1999;24(3):427–435. doi:10.1023/A:1020997903147. [PubMed] [CrossRef] [Google Scholar]

107. Yatin S. M., Yatin M., Aulick T., Ain K. B., Butterfield D. A. Alzheimer’s amyloid β-peptide associated free radicals increase rat embryonic neuronal polyamine uptake and ornithine decarboxylase activity: protective effect of vitamin E. Neuroscience Letters. 1999;263(1):17–20. doi:10.1016/S0304-3940(99)00101-9. [PubMed] [CrossRef] [Google Scholar]

108. Yatin S. M., Varadarajan S., Link C., Butterfield D. A. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid β-peptide (1–42) Neurobiology of Aging. 1999;20(3):325–330. [PubMed] [Google Scholar]

109. Yatin S. M., Aksenova M., Aksenov M., Butterfield D. A. Effect of transglutaminase on Aβ (1–40) fibril formation and neurotoxicity. Alzheimer’s Reports. 1999;2(3):165–170. [Google Scholar]

110. Varadarajan S., Yatin S., Aksenova M., Butterfield D. A. Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. Journal of Structural Biology. 2000;130(2-3):184–208. doi:10.1006/jsbi.2000.4274. [PubMed] [CrossRef] [Google Scholar]

111. Mattson M. P., Lovell M. A., Furukawa K., Markesbery W. R. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. Journal of Neurochemistry. 1995;65(4):1740–1751. doi:10.1046/j.1471-4159.1995.65041740.x. [PubMed] [CrossRef] [Google Scholar]

112. Behl C., Davis J. B., Lesley R., Schubert D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 1994;77(6):817–827. doi:10.1016/0092-8674(94)90131-7. [PubMed] [CrossRef] [Google Scholar]

113. Hane F., Tran G., Attwood S. J., Leonenko Z. Cu2+ affects amyloid-β (1–42) aggregation by increasing peptide-peptide binding forces. PLoS One. 2013;8(3, article e59005) doi:10.1371/journal.pone.0059005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Huang X., Atwood C. S., Hartshorn M. A., et al. The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 1999;38(24):7609–7616. doi:10.1021/bi990438f. [PubMed] [CrossRef] [Google Scholar]

115. Huang X., Cuajungco M. P., Atwood C. S., et al. Cu(II) potentiation of Alzheimer Aβ neurotoxicity: correlation with cell-free hydrogen peroxide production and metal reduction. Journal of Biological Chemistry. 1999;274(52):37111–37116. doi:10.1074/jbc.274.52.37111. [PubMed] [CrossRef] [Google Scholar]

116. Hornykiewicz O., Kish S. J. Biochemical pathophysiology of Parkinson’s disease. Advances in Neurology. 1987;45:19–34. [PubMed] [Google Scholar]

117. Przedborski S., Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxidants & Redox Signaling. 2005;7(5-6):685–693. doi:10.1089/ars.2005.7.685. [PubMed] [CrossRef] [Google Scholar]

118. Schapira A. H. Pathogenesis of Parkinson’s disease. Bailliere’s Clinical Neurology. 1997;6(1):15–36. [PubMed] [Google Scholar]

119. Orr C. F., Rowe D. B., Halliday G. M. An inflammatory review of Parkinson’s disease. Progress in Neurobiology. 2002;68(5):325–340. doi:10.1016/S0301-0082(02)00127-2. [PubMed] [CrossRef] [Google Scholar]

120. Vekrellis K., Xilouri M., Emmanouilidou E., Rideout H. J., Stefanis L. Pathological roles of α-synuclein in neurological disorders. The Lancet Neurology. 2011;10(11):1015–1025. doi:10.1016/S1474-4422(11)70213-7. [PubMed] [CrossRef] [Google Scholar]

121. Lotharius J., Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience. 2002;3(12):932–942. doi:10.1038/nrn983. [PubMed] [CrossRef] [Google Scholar]

122. Graham D. G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Molecular Pharmacology. 1978;14(4):633–643. [PubMed] [Google Scholar]

123. Yakunin E., Kisos H., Kulik W., Grigoletto J., Wanders R. J. A., Sharon R. The regulation of catalase activity by PPAR γ is affected by α-synuclein. Annals of Clinical and Translational Neurology. 2014;1(3):145–159. doi:10.1002/acn3.38. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Schallreuter K. U., Wood J. M., Berger J. Low catalase levels in the epidermis of patients with vitiligo. Journal of Investigative Dermatology. 1991;97(6):1081–1085. doi:10.1111/1523-1747.ep12492612. [PubMed] [CrossRef] [Google Scholar]

125. Maresca V., Roccella M., Roccella F., et al. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. Journal of Investigative Dermatology. 1997;109(3):310–313. doi:10.1111/1523-1747.ep12335801. [PubMed] [CrossRef] [Google Scholar]

126. Moellmann G., Klein-Angerer S., Scollay D. A., Nordlund J. J., Lerner A. B. Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. Journal of Investigative Dermatology. 1982;79(5):321–330. doi:10.1111/1523-1747.ep12500086. [PubMed] [CrossRef] [Google Scholar]

127. Bhawan J., Bhutani L. K. Keratinocyte damage in vitiligo. Journal of Cutaneous Pathology. 1983;10(3):207–212. doi:10.1111/j.1600-0560.1983.tb00328.x. [PubMed] [CrossRef] [Google Scholar]

128. Halliwell B., Gutteridge J. M. C. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of Biochemistry and Biophysics. 1986;246(2):501–514. doi:10.1016/0003-9861(86)90305-X. [PubMed] [CrossRef] [Google Scholar]

129. Aronoff S. Catalase: kinetics of photooxidation. Science. 1965;150(3692):72–73. doi:10.1126/science.150.3692.72. [PubMed] [CrossRef] [Google Scholar]

130. Schallreuter K. U., Chiuchiarelli G., Cemeli E., et al. Estrogens can contribute to hydrogen peroxide generation and quinone-mediated DNA damage in peripheral blood lymphocytes from patients with vitiligo. Journal of Investigative Dermatology. 2006;126(5):1036–1042. doi:10.1038/sj.jid.5700257. [PubMed] [CrossRef] [Google Scholar]

131. Lv Y. J., Liao W. J., Luan Q., Wang H., Wang L., Li Q. The polymorphism of catalase T/C codon 389 in exon 9 and vitiligo susceptibility: a meta-analysis. Journal of the European Academy of Dermatology and Venereology. 2011;25(8):955–958. doi:10.1111/j.1468-3083.2010.03897.x. [PubMed] [CrossRef] [Google Scholar]

132. Shajil E. M., Laddha N. C., Chatterjee S., et al. Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population. Pigment Cell Research. 2007;20(5):405–407. doi:10.1111/j.1600-0749.2007.00406.x. [PubMed] [CrossRef] [Google Scholar]

133. Takahara S., Miyamoto H. Clinical and experimental studies on the odontogenous progressive necrotic ostitis due to lack of blood catalase. Journal of the Otorhinolaryngological Society of Japan. 1948;51:163–164. [Google Scholar]

134. Takahara S. Progressive oral gangrene probably due to lack of catalase in the blood (acatalasemia) The Lancet. 1952;260(6745):1101–1104. doi:10.1016/S0140-6736(52)90939-2. [PubMed] [CrossRef] [Google Scholar]

135. Takahara S. Acatalasemia in Japan. In: Beutler E., editor. Hereditary Disorder of Erythrocytic Metabolism, vol. 1. New York, NY, USA: Grune and Stratton; 1968. pp. 21–40. [Google Scholar]

136. Takahara S., Hamilton H. B., Neel J. V., Kobara T. Y., Ogura Y., Nishimura E. T. Hypocatalasemia: a new genetic carrier state. The Journal of Clinical Investigation. 1960;39(4):610–619. doi:10.1172/JCI104075. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Wen J.-K., Osumi T., Hashimoto T., Ogata M. Molecular analysis of human acatalasemia: identification of splicing mutation. Journal of Molecular Biology. 1990;211(2):383–393. doi:10.1016/0022-2836(90)90359-T. [PubMed] [CrossRef] [Google Scholar]

138. Hirono A., Sasaya-Hamada F., Kanno H., Fujii H., Yoshida T., Miwa S. A novel human catalase mutation (358 T_del) causing Japanese-type acatalasemia. Blood Cells, Molecules, and Diseases. 1995;21(3):232–234. doi:10.1006/bcmd.1995.0026. [PubMed] [CrossRef] [Google Scholar]

139. Aebi H., Baggiolini M., Dewald B., et al. Observations in two Swiss Families with Acatalasia II. Enzymologia biologica et clinica. 1964;4(3):121–151. doi:10.1159/000458023. [PubMed] [CrossRef] [Google Scholar]

140. Aebi H., Bossi E., Cantz M., Matsubara S., Suter H. Acatalasemia in Switzerland. In: Beutler E., editor. Hereditary Disorder of Erythrocyte Metabolism. New York, NY, USA: Grune and Shantton; 1968. pp. 41–65. [Google Scholar]

141. Aebi H., Wyss S. R., Scherz B., Gross J. Properties of erythrocyte catalase from hom*ozygotes and heterozygotes for Swiss-type acatalasemia. Biochemical Genetics. 1976;14(9-10):791–807. doi:10.1007/BF00485342. [PubMed] [CrossRef] [Google Scholar]

142. Crawford D. R., Mirault M. E., Moret R., Zbinden I., Cerutti P. A. Molecular defect in human acatalasia fibroblasts. Biochemical and Biophysical Research Communications. 1988;153(1):59–66. doi:10.1016/S0006-291X(88)81189-6. [PubMed] [CrossRef] [Google Scholar]

143. Singhal A., Morris V. B., Labhasetwar V., Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death & Disease. 2013;4(11, article e903) doi:10.1038/cddis.2013.362. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Baker C., Marcus B., Huffman K., Kruk H., Malfroy B., Doctrow S. R. Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. The Journal of Pharmacology and Experimental Therapeutics. 1998;284(1):215–221. [PubMed] [Google Scholar]

145. Jin L. H., Bahn J. H., Eum W. S., et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radical Biology & Medicine. 2001;31(11):1509–1519. doi:10.1016/S0891-5849(01)00734-1. [PubMed] [CrossRef] [Google Scholar]

146. Wiedau-Pazos M., Goto J. J., Rabizadeh S., et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996;271(5248):515–518. doi:10.1126/science.271.5248.515. [PubMed] [CrossRef] [Google Scholar]

147. Beckman J. S., Carson M., Smith C. D., Koppenol W. H. ALS, SOD and peroxynitrite. Nature. 1993;364(6438):p. 584. doi:10.1038/364584a0. [PubMed] [CrossRef] [Google Scholar]

148. Reinholz M. M., Merkle C. M., Poduslo J. F. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Experimental Neurology. 1999;159(1):204–216. doi:10.1006/exnr.1999.7142. [PubMed] [CrossRef] [Google Scholar]

149. Melov S., Doctrow S. R., Schneider J. A., et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase–catalase mimetics. The Journal of Neuroscience. 2001;21(21):8348–8353. doi:10.1523/JNEUROSCI.21-21-08348.2001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Ye G., Metreveli N. S., Donthi R. V., et al. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes. 2004;53(5):1336–1343. doi:10.2337/diabetes.53.5.1336. [PubMed] [CrossRef] [Google Scholar]

151. Aneja A., Tang W. H. W., Bansilal S., Garcia M. J., Farkouh M. E. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. The American Journal of Medicine. 2008;121(9):748–757. doi:10.1016/j.amjmed.2008.03.046. [PubMed] [CrossRef] [Google Scholar]

152. Agar N. S., Sadrzadeh S. M., Hallaway P. E., Eaton J. W. Erythrocyte catalase. A somatic oxidant defense? The Journal of Clinical Investigation. 1986;77(1):319–321. doi:10.1172/JCI112294. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Giulivi C., Davies K. J. A. Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. Methods in Enzymology. 1994;233 doi:10.1016/S0076-6879(94)33042-5. [PubMed] [CrossRef] [Google Scholar]

154. Masuoka N., Wakimoto M., Ubuka T., Nakano T. Spectrophotometric determination of hydrogen peroxide: catalase activity and rates of hydrogen peroxide removal by erythrocytes. Clinica Chimica Acta. 1996;254(2):101–112. doi:10.1016/0009-8981(96)06374-7. [PubMed] [CrossRef] [Google Scholar]

155. Hashida K., Sakakura Y., Makino N. Kinetic studies on the hydrogen peroxide elimination by cultured PC12 cells: rate limitation by glucose-6-phosphate dehydrogenase. Biochimica et Biophysica Acta (BBA) - General Subjects. 2002;1572(1):85–90. doi:10.1016/S0304-4165(02)00282-9. [PubMed] [CrossRef] [Google Scholar]

156. Evans J. L., Goldfine I. D., Maddux B. A., Grodsky G. M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine Reviews. 2002;23(5):599–622. doi:10.1210/er.2001-0039. [PubMed] [CrossRef] [Google Scholar]

157. Hampton M. B., Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Letters. 1997;414(3):552–556. doi:10.1016/S0014-5793(97)01068-5. [PubMed] [CrossRef] [Google Scholar]

158. Pignatelli F., Pulcinelli M., Lenti L. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood. 1998;91(2):484–490. [PubMed] [Google Scholar]

159. Switala J., Loewen P. C. Diversity of properties among catalases. Archives of Biochemistry and Biophysics. 2002;401(2):145–154. doi:10.1016/S0003-9861(02)00049-8. [PubMed] [CrossRef] [Google Scholar]

160. Aebi H. E. Catalase. Methods of Enzymatic Analysis. 1983;3:273–286. [Google Scholar]

161. Schonbaum G. R., Chance B. 7 catalase. The Enzymes. 1976;13:363–408. doi:10.1016/S1874-6047(08)60245-0. [CrossRef] [Google Scholar]

162. Alptekin Ö., Tükel S. S., Yıldırım D., Alagöz D. Characterization and properties of catalase immobilized onto controlled pore glass and its application in batch and plug-flow type reactors. Journal of Molecular Catalysis B: Enzymatic. 2009;58(1-4):124–131. doi:10.1016/j.molcatb.2008.12.004. [CrossRef] [Google Scholar]

163. Alptekin Ö., Tükel S. S., Yıldırım D., Alagöz D. Immobilization of catalase onto Eupergit C and its characterization. Journal of Molecular Catalysis B: Enzymatic. 2010;64(3-4):177–183. doi:10.1016/j.molcatb.2009.09.010. [CrossRef] [Google Scholar]

164. Ray M., Mishra P., Das P., Sabat S. C. Expression and purification of soluble bio-active rice plant catalase-A from recombinant Escherichia coli. Journal of Biotechnology. 2012;157(1):12–19. doi:10.1016/j.jbiotec.2011.09.022. [PubMed] [CrossRef] [Google Scholar]

165. Mondal P., Ray M., Kar M., Sabat S. C. Molecular identification and properties of a light-insensitive rice catalase-B expressed in E. coli. Biotechnology Letters. 2008;30(3):563–568. doi:10.1007/s10529-007-9553-9. [PubMed] [CrossRef] [Google Scholar]

166. Kandukuri S. S., Noor A., Ranjini S. S., Vijayalakshmi M. A. Purification and characterization of catalase from sprouted black gram (Vigna mungo) seeds. Journal of Chromatography B. 2012;889-890:50–54. doi:10.1016/j.jchromb.2012.01.029. [PubMed] [CrossRef] [Google Scholar]

167. Clairborne A., Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. physicochemical characterization and analysis of its dual catalytic and peroxidatic activities. Journal of Biological Chemistry. 1979;254(10):4245–4252. [PubMed] [Google Scholar]

168. Góth L., Shemirani A., Kalmár T. A novel catalase mutation (a GA insertion) causes the Hungarian type of acatalasemia. Blood Cells, Molecules, and Diseases. 2000;26(2):151–154. doi:10.1006/bcmd.2000.0288. [PubMed] [CrossRef] [Google Scholar]

169. Góth L. A novel catalase mutation (a G insertion in exon 2) causes the type B of the Hungarian acatalasemia. Clinica Chimica Acta. 2001;311(2):161–163. doi:10.1016/S0009-8981(01)00609-X. [PubMed] [CrossRef] [Google Scholar]

170. Góth L., Rass P., Madarasi I. A novel catalase mutation detected by polymerase chain reaction-single strand conformation polymorphism, nucleotide sequencing, and western blot analyses is responsible for the type C of Hungarian acatalasemia. Electrophoresis. 2001;22(1):49–51. doi:10.1002/1522-2683(200101)22:1<49::AID-ELPS49>3.0.CO;2-W. [PubMed] [CrossRef] [Google Scholar]

171. Góth L., Rass P., Pay A. Catalase enzyme mutations and their association with diseases. Molecular Diagnosis. 2004;8(3):141–149. doi:10.1007/BF03260057. [PubMed] [CrossRef] [Google Scholar]

172. Góth L., Vitai M., Rass P., Sukei E., Pay A. Detection of a novel familial catalase mutation (Hungarian type D) and the possible risk of inherited catalase deficiency for diabetes mellitus. Electrophoresis. 2005;26(9):1646–1649. doi:10.1002/elps.200410384. [PubMed] [CrossRef] [Google Scholar]

Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases (2024)
Top Articles
Latest Posts
Article information

Author: Moshe Kshlerin

Last Updated:

Views: 6230

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Moshe Kshlerin

Birthday: 1994-01-25

Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

Phone: +2424755286529

Job: District Education Designer

Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.