Multiple steps in the regulation of transcription-factor level and activity. (2024)

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsem*nt of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer | PMC Copyright Notice

Multiple steps in the regulation of transcription-factor level and activity. (1)

Link to Publisher's site

Abstract

This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduction pathways affecting a given gene. It is obvious that the regulation of these regulators themselves is of crucial importance for differential gene expression during development and in terminally differentiated cells. Transcription factors can be regulated at two, principally different, levels, namely concentration and activity, each of which can be modulated in a variety of ways. The concentrations of transcription factors, as of intracellular proteins in general, may be regulated at any of the steps leading from DNA to protein, including transcription, RNA processing, mRNA degradation and translation. The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors. Heterodimerization between transcription factors adds another dimension to the regulatory diversity and signal integration. Finally, non-DNA-binding (accessory) factors may mediate a diverse range of functions, e.g. serving as a bridge between the transcription factor and the basal transcription machinery, stabilizing the DNA-binding complex or changing the specificity of the target sequence recognition. The present review presents an overview of different modes of transcription-factor regulation, each illustrated by typical examples.

Full Text

The Full Text of this article is available as a PDF (408K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Keller AD. Specifying epigenetic states with autoregulatory transcription factors. J Theor Biol. 1994 Sep 21;170(2):175–181. [PubMed] [Google Scholar]
  • Serfling E. Autoregulation--a common property of eukaryotic transcription factors? Trends Genet. 1989 May;5(5):131–133. [PubMed] [Google Scholar]
  • Thayer MJ, Tapscott SJ, Davis RL, Wright WE, Lassar AB, Weintraub H. Positive autoregulation of the myogenic determination gene MyoD1. Cell. 1989 Jul 28;58(2):241–248. [PubMed] [Google Scholar]
  • Jiang J, Hoey T, Levine M. Autoregulation of a segmentation gene in Drosophila: combinatorial interaction of the even-skipped homeo box protein with a distal enhancer element. Genes Dev. 1991 Feb;5(2):265–277. [PubMed] [Google Scholar]
  • Regulski M, Dessain S, McGinnis N, McGinnis W. High-affinity binding sites for the Deformed protein are required for the function of an autoregulatory enhancer of the Deformed gene. Genes Dev. 1991 Feb;5(2):278–286. [PubMed] [Google Scholar]
  • Zhao XY, Hung MC. Negative autoregulation of the neu gene is mediated by a novel enhancer. Mol Cell Biol. 1992 Jun;12(6):2739–2748. [PMC free article] [PubMed] [Google Scholar]
  • Legraverend C, Antonson P, Flodby P, Xanthopoulos KG. High level activity of the mouse CCAAT/enhancer binding protein (C/EBP alpha) gene promoter involves autoregulation and several ubiquitous transcription factors. Nucleic Acids Res. 1993 Apr 25;21(8):1735–1742. [PMC free article] [PubMed] [Google Scholar]
  • Rhodes SJ, Chen R, DiMattia GE, Scully KM, Kalla KA, Lin SC, Yu VC, Rosenfeld MG. A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes Dev. 1993 Jun;7(6):913–932. [PubMed] [Google Scholar]
  • Shan B, Chang CY, Jones D, Lee WH. The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol Cell Biol. 1994 Jan;14(1):299–309. [PMC free article] [PubMed] [Google Scholar]
  • Timchenko N, Wilson DR, Taylor LR, Abdelsayed S, Wilde M, Sawadogo M, Darlington GJ. Autoregulation of the human C/EBP alpha gene by stimulation of upstream stimulatory factor binding. Mol Cell Biol. 1995 Mar;15(3):1192–1202. [PMC free article] [PubMed] [Google Scholar]
  • Walsh MJ, Shue G, Spidoni K, Kapoor A. E2F-1 and a cyclin-like DNA repair enzyme, uracil-DNA glycosylase, provide evidence for an autoregulatory mechanism for transcription. J Biol Chem. 1995 Mar 10;270(10):5289–5298. [PubMed] [Google Scholar]
  • Keller AD. Model genetic circuits encoding autoregulatory transcription factors. J Theor Biol. 1995 Jan 21;172(2):169–185. [PubMed] [Google Scholar]
  • Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. [PubMed] [Google Scholar]
  • Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 1989 Mar;8(3):701–709. [PMC free article] [PubMed] [Google Scholar]
  • Edmondson DG, Olson EN. A gene with hom*ology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 1989 May;3(5):628–640. [PubMed] [Google Scholar]
  • Wright WE, Sassoon DA, Lin VK. Myogenin, a factor regulating myogenesis, has a domain hom*ologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. [PubMed] [Google Scholar]
  • Rhodes SJ, Konieczny SF. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 1989 Dec;3(12B):2050–2061. [PubMed] [Google Scholar]
  • Miner JH, Wold B. Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1089–1093. [PMC free article] [PubMed] [Google Scholar]
  • Braun T, Bober E, Winter B, Rosenthal N, Arnold HH. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 1990 Mar;9(3):821–831. [PMC free article] [PubMed] [Google Scholar]
  • Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. [PubMed] [Google Scholar]
  • Olson EN, Klein WH. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 1994 Jan;8(1):1–8. [PubMed] [Google Scholar]
  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993 Dec 31;75(7):1351–1359. [PubMed] [Google Scholar]
  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993 Aug 5;364(6437):501–506. [PubMed] [Google Scholar]
  • Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993 Aug 5;364(6437):532–535. [PubMed] [Google Scholar]
  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. [PubMed] [Google Scholar]
  • Buckingham M. Making muscle in mammals. Trends Genet. 1992 Apr;8(4):144–148. [PubMed] [Google Scholar]
  • Zingg JM, Pedraza-Alva G, Jost JP. MyoD1 promoter autoregulation is mediated by two proximal E-boxes. Nucleic Acids Res. 1994 Jun 25;22(12):2234–2241. [PMC free article] [PubMed] [Google Scholar]
  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. [PubMed] [Google Scholar]
  • Kreider BL, Benezra R, Rovera G, Kadesch T. Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science. 1992 Mar 27;255(5052):1700–1702. [PubMed] [Google Scholar]
  • Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992 Aug;6(8):1466–1479. [PubMed] [Google Scholar]
  • Hu JS, Olson EN, Kingston RE. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol. 1992 Mar;12(3):1031–1042. [PMC free article] [PubMed] [Google Scholar]
  • Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell. 1991 Jul 26;66(2):305–315. [PubMed] [Google Scholar]
  • Zhuang Y, Kim CG, Bartelmez S, Cheng P, Groudine M, Weintraub H. Helix-loop-helix transcription factors E12 and E47 are not essential for skeletal or cardiac myogenesis, erythropoiesis, chondrogenesis, or neurogenesis. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12132–12136. [PMC free article] [PubMed] [Google Scholar]
  • Cheng TC, Tseng BS, Merlie JP, Klein WH, Olson EN. Activation of the myogenin promoter during mouse embryogenesis in the absence of positive autoregulation. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):561–565. [PMC free article] [PubMed] [Google Scholar]
  • Mak KL, To RQ, Kong Y, Konieczny SF. The MRF4 activation domain is required to induce muscle-specific gene expression. Mol Cell Biol. 1992 Oct;12(10):4334–4346. [PMC free article] [PubMed] [Google Scholar]
  • Pollock R, Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991 Dec;5(12A):2327–2341. [PubMed] [Google Scholar]
  • Yu YT, Breitbart RE, Smoot LB, Lee Y, Mahdavi V, Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992 Sep;6(9):1783–1798. [PubMed] [Google Scholar]
  • Edmondson DG, Cheng TC, Cserjesi P, Chakraborty T, Olson EN. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol Cell Biol. 1992 Sep;12(9):3665–3677. [PMC free article] [PubMed] [Google Scholar]
  • Yee SP, Rigby PW. The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev. 1993 Jul;7(7A):1277–1289. [PubMed] [Google Scholar]
  • Leibham D, Wong MW, Cheng TC, Schroeder S, Weil PA, Olson EN, Perry M. Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter. Mol Cell Biol. 1994 Jan;14(1):686–699. [PMC free article] [PubMed] [Google Scholar]
  • Breitbart RE, Liang CS, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development. 1993 Aug;118(4):1095–1106. [PubMed] [Google Scholar]
  • Rana B, Xie Y, Mischoulon D, Bucher NL, Farmer SR. The DNA binding activity of C/EBP transcription factor is regulated in the G1 phase of the hepatocyte cell cycle. J Biol Chem. 1995 Jul 28;270(30):18123–18132. [PubMed] [Google Scholar]
  • Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991 Sep;5(9):1538–1552. [PubMed] [Google Scholar]
  • Scott LM, Civin CI, Rorth P, Friedman AD. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood. 1992 Oct 1;80(7):1725–1735. [PubMed] [Google Scholar]
  • Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 1995 Jan 15;9(2):168–181. [PubMed] [Google Scholar]
  • Katz S, Kowenz-Leutz E, Müller C, Meese K, Ness SA, Leutz A. The NF-M transcription factor is related to C/EBP beta and plays a role in signal transduction, differentiation and leukemogenesis of avian myelomonocytic cells. EMBO J. 1993 Apr;12(4):1321–1332. [PMC free article] [PubMed] [Google Scholar]
  • Ness SA, Kowenz-Leutz E, Casini T, Graf T, Leutz A. Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types. Genes Dev. 1993 May;7(5):749–759. [PubMed] [Google Scholar]
  • Wu Z, Xie Y, Bucher NL, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995 Oct 1;9(19):2350–2363. [PubMed] [Google Scholar]
  • Samuelsson L, Strömberg K, Vikman K, Bjursell G, Enerbäck S. The CCAAT/enhancer binding protein and its role in adipocyte differentiation: evidence for direct involvement in terminal adipocyte development. EMBO J. 1991 Dec;10(12):3787–3793. [PMC free article] [PubMed] [Google Scholar]
  • Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switch. Science. 1991 Jan 18;251(4991):288–292. [PubMed] [Google Scholar]
  • Freytag SO, Geddes TJ. Reciprocal regulation of adipogenesis by Myc and C/EBP alpha. Science. 1992 Apr 17;256(5055):379–382. [PubMed] [Google Scholar]
  • Vasseur-Cognet M, Lane MD. Trans-acting factors involved in adipogenic differentiation. Curr Opin Genet Dev. 1993 Apr;3(2):238–245. [PubMed] [Google Scholar]
  • Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8757–8761. [PMC free article] [PubMed] [Google Scholar]
  • Freytag SO, Paielli DL, Gilbert JD. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 1994 Jul 15;8(14):1654–1663. [PubMed] [Google Scholar]
  • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994 Dec 30;79(7):1147–1156. [PubMed] [Google Scholar]
  • Ingham PW. The molecular genetics of embryonic pattern formation in Drosophila. Nature. 1988 Sep 1;335(6185):25–34. [PubMed] [Google Scholar]
  • Driever W, Nüsslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature. 1989 Jan 12;337(6203):138–143. [PubMed] [Google Scholar]
  • Jäckle H, Sauer F. Transcriptional cascades in Drosophila. Curr Opin Cell Biol. 1993 Jun;5(3):505–512. [PubMed] [Google Scholar]
  • Lazar MA, Hodin RA, Cardona G, Chin WW. Gene expression from the c-erbA alpha/Rev-ErbA alpha genomic locus. Potential regulation of alternative splicing by opposite strand transcription. J Biol Chem. 1990 Aug 5;265(22):12859–12863. [PubMed] [Google Scholar]
  • Foulkes NS, Sassone-Corsi P. More is better: activators and repressors from the same gene. Cell. 1992 Feb 7;68(3):411–414. [PubMed] [Google Scholar]
  • Davis I, Ish-Horowicz D. Apical localization of pair-rule transcripts requires 3' sequences and limits protein diffusion in the Drosophila blastoderm embryo. Cell. 1991 Nov 29;67(5):927–940. [PubMed] [Google Scholar]
  • Kislauskis EH, Singer RH. Determinants of mRNA localization. Curr Opin Cell Biol. 1992 Dec;4(6):975–978. [PubMed] [Google Scholar]
  • Sallés FJ, Lieberfarb ME, Wreden C, Gergen JP, Strickland S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science. 1994 Dec 23;266(5193):1996–1999. [PubMed] [Google Scholar]
  • Bach I, Yaniv M. More potent transcriptional activators or a transdominant inhibitor of the HNF1 homeoprotein family are generated by alternative RNA processing. EMBO J. 1993 Nov;12(11):4229–4242. [PMC free article] [PubMed] [Google Scholar]
  • Foulkes NS, Borrelli E, Sassone-Corsi P. CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell. 1991 Feb 22;64(4):739–749. [PubMed] [Google Scholar]
  • Laoide BM, Foulkes NS, Schlotter F, Sassone-Corsi P. The functional versatility of CREM is determined by its modular structure. EMBO J. 1993 Mar;12(3):1179–1191. [PMC free article] [PubMed] [Google Scholar]
  • Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993 Dec 3;75(5):875–886. [PubMed] [Google Scholar]
  • Mellström B, Naranjo JR, Foulkes NS, Lafarga M, Sassone-Corsi P. Transcriptional response to cAMP in brain: specific distribution and induction of CREM antagonists. Neuron. 1993 Apr;10(4):655–665. [PubMed] [Google Scholar]
  • Brindle P, Linke S, Montminy M. Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature. 1993 Aug 26;364(6440):821–824. [PubMed] [Google Scholar]
  • Lalli E, Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem. 1994 Jul 1;269(26):17359–17362. [PubMed] [Google Scholar]
  • Stehle JH, Foulkes NS, Molina CA, Simonneaux V, Pévet P, Sassone-Corsi P. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature. 1993 Sep 23;365(6444):314–320. [PubMed] [Google Scholar]
  • Sassone-Corsi P. Goals for signal transduction pathways: linking up with transcriptional regulation. EMBO J. 1994 Oct 17;13(20):4717–4728. [PMC free article] [PubMed] [Google Scholar]
  • Drevet JR, Swevers L, Iatrou K. Developmental regulation of a silkworm gene encoding multiple GATA-type transcription factors by alternative splicing. J Mol Biol. 1995 Feb 10;246(1):43–53. [PubMed] [Google Scholar]
  • Wang ZY, Qiu QQ, Huang J, Gurrieri M, Deuel TF. Products of alternatively spliced transcripts of the Wilms' tumor suppressor gene, wt1, have altered DNA binding specificity and regulate transcription in different ways. Oncogene. 1995 Feb 2;10(3):415–422. [PubMed] [Google Scholar]
  • Teboul M, Enmark E, Li Q, Wikström AC, Pelto-Huikko M, Gustafsson JA. OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2096–2100. [PMC free article] [PubMed] [Google Scholar]
  • Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol. 1994 Nov;14(11):7111–7123. [PMC free article] [PubMed] [Google Scholar]
  • Lin Q, Luo X, Sawadogo M. Archaic structure of the gene encoding transcription factor USF. J Biol Chem. 1994 Sep 30;269(39):23894–23903. [PubMed] [Google Scholar]
  • Chen BP, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem. 1994 Jun 3;269(22):15819–15826. [PubMed] [Google Scholar]
  • Grumont RJ, Gerondakis S. Alternative splicing of RNA transcripts encoded by the murine p105 NF-kappa B gene generates I kappa B gamma isoforms with different inhibitory activities. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4367–4371. [PMC free article] [PubMed] [Google Scholar]
  • Das G, Herr W. Enhanced activation of the human histone H2B promoter by an Oct-1 variant generated by alternative splicing. J Biol Chem. 1993 Nov 25;268(33):25026–25032. [PubMed] [Google Scholar]
  • Lillycrop KA, Latchman DS. Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J Biol Chem. 1992 Dec 15;267(35):24960–24965. [PubMed] [Google Scholar]
  • Gogos JA, Hsu T, Bolton J, Kafatos FC. Sequence discrimination by alternatively spliced isoforms of a DNA binding zinc finger domain. Science. 1992 Sep 25;257(5078):1951–1955. [PubMed] [Google Scholar]
  • Buettner R, Kannan P, Imhof A, Bauer R, Yim SO, Glockshuber R, Van Dyke MW, Tainsky MA. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol. 1993 Jul;13(7):4174–4185. [PMC free article] [PubMed] [Google Scholar]
  • Decker CJ, Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994 Aug;19(8):336–340. [PubMed] [Google Scholar]
  • Beelman CA, Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. [PubMed] [Google Scholar]
  • Johnson RS, Spiegelman BM, Papaioannou V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell. 1992 Nov 13;71(4):577–586. [PubMed] [Google Scholar]
  • Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. [PubMed] [Google Scholar]
  • Müller R, Bravo R, Burckhardt J, Curran T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature. 1984 Dec 20;312(5996):716–720. [PubMed] [Google Scholar]
  • Zubiaga AM, Belasco JG, Greenberg ME. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995 Apr;15(4):2219–2230. [PMC free article] [PubMed] [Google Scholar]
  • Winstall E, Gamache M, Raymond V. Rapid mRNA degradation mediated by the c-fos 3' AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 3' AU-rich element occur through similar polysome-associated mechanisms. Mol Cell Biol. 1995 Jul;15(7):3796–3804. [PMC free article] [PubMed] [Google Scholar]
  • Muhlrad D, Decker CJ, Parker R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev. 1994 Apr 1;8(7):855–866. [PubMed] [Google Scholar]
  • Lagnado CA, Brown CY, Goodall GJ. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol. 1994 Dec;14(12):7984–7995. [PMC free article] [PubMed] [Google Scholar]
  • Shyu AB, Belasco JG, Greenberg ME. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. [PubMed] [Google Scholar]
  • Chen CY, You Y, Shyu AB. Two cellular proteins bind specifically to a purine-rich sequence necessary for the destabilization function of a c-fos protein-coding region determinant of mRNA instability. Mol Cell Biol. 1992 Dec;12(12):5748–5757. [PMC free article] [PubMed] [Google Scholar]
  • Schiavi SC, Wellington CL, Shyu AB, Chen CY, Greenberg ME, Belasco JG. Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J Biol Chem. 1994 Feb 4;269(5):3441–3448. [PubMed] [Google Scholar]
  • Hershey JW. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. [PubMed] [Google Scholar]
  • Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. [PubMed] [Google Scholar]
  • Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, Lawrence JC., Jr PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994 Oct 28;266(5185):653–656. [PubMed] [Google Scholar]
  • Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC, Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature. 1994 Oct 27;371(6500):762–767. [PubMed] [Google Scholar]
  • Proud CG. Translation. Turned on by insulin. Nature. 1994 Oct 27;371(6500):747–748. [PubMed] [Google Scholar]
  • Hinnebusch AG. Translational control of GCN4: an in vivo barometer of initiation-factor activity. Trends Biochem Sci. 1994 Oct;19(10):409–414. [PubMed] [Google Scholar]
  • Rowlands AG, Panniers R, Henshaw EC. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem. 1988 Apr 25;263(12):5526–5533. [PubMed] [Google Scholar]
  • Rhoads RE. Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem. 1993 Feb 15;268(5):3017–3020. [PubMed] [Google Scholar]
  • Pantopoulos K, Johansson HE, Hentze MW. The role of the 5' untranslated region of eukaryotic messenger RNAs in translation and its investigation using antisense technologies. Prog Nucleic Acid Res Mol Biol. 1994;48:181–238. [PMC free article] [PubMed] [Google Scholar]
  • Montine KS, Henshaw EC. Serum growth factors cause rapid stimulation of protein synthesis and dephosphorylation of eIF-2 in serum deprived Ehrlich cells. Biochim Biophys Acta. 1989 Dec 14;1014(3):282–288. [PubMed] [Google Scholar]
  • Sarre TF. The phosphorylation of eukaryotic initiation factor 2: a principle of translational control in mammalian cells. Biosystems. 1989;22(4):311–325. [PubMed] [Google Scholar]
  • Welsh GI, Proud CG. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J. 1993 Sep 15;294(Pt 3):625–629. [PMC free article] [PubMed] [Google Scholar]
  • Mueller PP, Hinnebusch AG. Multiple upstream AUG codons mediate translational control of GCN4. Cell. 1986 Apr 25;45(2):201–207. [PubMed] [Google Scholar]
  • Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell. 1992 Feb 7;68(3):585–596. [PubMed] [Google Scholar]
  • Dever TE, Chen JJ, Barber GN, Cigan AM, Feng L, Donahue TF, London IM, Katze MG, Hinnebusch AG. Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4616–4620. [PMC free article] [PubMed] [Google Scholar]
  • Abastado JP, Miller PF, Jackson BM, Hinnebusch AG. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol. 1991 Jan;11(1):486–496. [PMC free article] [PubMed] [Google Scholar]
  • Friedman AD, Landschulz WH, McKnight SL. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. Genes Dev. 1989 Sep;3(9):1314–1322. [PubMed] [Google Scholar]
  • Descombes P, Chojkier M, Lichtsteiner S, Falvey E, Schibler U. LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev. 1990 Sep;4(9):1541–1551. [PubMed] [Google Scholar]
  • Chandrasekaran C, Gordon JI. Cell lineage-specific and differentiation-dependent patterns of CCAAT/enhancer binding protein alpha expression in the gut epithelium of normal and transgenic mice. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8871–8875. [PMC free article] [PubMed] [Google Scholar]
  • Buck M, Turler H, Chojkier M. LAP (NF-IL-6), a tissue-specific transcriptional activator, is an inhibitor of hepatoma cell proliferation. EMBO J. 1994 Feb 15;13(4):851–860. [PMC free article] [PubMed] [Google Scholar]
  • Hendricks-Taylor LR, Darlington GJ. Inhibition of cell proliferation by C/EBP alpha occurs in many cell types, does not require the presence of p53 or Rb, and is not affected by large T-antigen. Nucleic Acids Res. 1995 Nov 25;23(22):4726–4733. [PMC free article] [PubMed] [Google Scholar]
  • Descombes P, Schibler U. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell. 1991 Nov 1;67(3):569–579. [PubMed] [Google Scholar]
  • Ossipow V, Descombes P, Schibler U. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8219–8223. [PMC free article] [PubMed] [Google Scholar]
  • Lin FT, MacDougald OA, Diehl AM, Lane MD. A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9606–9610. [PMC free article] [PubMed] [Google Scholar]
  • Calkhoven CF, Bouwman PR, Snippe L, Ab G. Translation start site multiplicity of the CCAAT/enhancer binding protein alpha mRNA is dictated by a small 5' open reading frame. Nucleic Acids Res. 1994 Dec 25;22(25):5540–5547. [PMC free article] [PubMed] [Google Scholar]
  • Nerlov C, Ziff EB. Three levels of functional interaction determine the activity of CCAAT/enhancer binding protein-alpha on the serum albumin promoter. Genes Dev. 1994 Feb 1;8(3):350–362. [PubMed] [Google Scholar]
  • MacDougald OA, Cornelius P, Liu R, Lane MD. Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J Biol Chem. 1995 Jan 13;270(2):647–654. [PubMed] [Google Scholar]
  • Birkenmeier EH, Gwynn B, Howard S, Jerry J, Gordon JI, Landschulz WH, McKnight SL. Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev. 1989 Aug;3(8):1146–1156. [PubMed] [Google Scholar]
  • Manchado C, Yubero P, Viñas O, Iglesias R, Villarroya F, Mampel T, Giralt M. CCAAT/enhancer-binding proteins alpha and beta in brown adipose tissue: evidence for a tissue-specific pattern of expression during development. Biochem J. 1994 Sep 15;302(Pt 3):695–700. [PMC free article] [PubMed] [Google Scholar]
  • Williams SC, Cantwell CA, Johnson PF. A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev. 1991 Sep;5(9):1553–1567. [PubMed] [Google Scholar]
  • Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ. Impaired energy homeostasis in C/EBP alpha knockout mice. Science. 1995 Aug 25;269(5227):1108–1112. [PubMed] [Google Scholar]
  • Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell. 1988 Jan 29;52(2):185–195. [PubMed] [Google Scholar]
  • Hann SR, Sloan-Brown K, Spotts GD. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev. 1992 Jul;6(7):1229–1240. [PubMed] [Google Scholar]
  • Tahara SM, Dietlin TA, Dever TE, Merrick WC, Worrilow LM. Effect of eukaryotic initiation factor 4F on AUG selection in a bicistronic mRNA. J Biol Chem. 1991 Feb 25;266(6):3594–3601. [PubMed] [Google Scholar]
  • Zimmer A, Zimmer AM, Reynolds K. Tissue specific expression of the retinoic acid receptor-beta 2: regulation by short open reading frames in the 5'-noncoding region. J Cell Biol. 1994 Nov;127(4):1111–1119. [PMC free article] [PubMed] [Google Scholar]
  • Hann SR. Regulation and function of non-AUG-initiated proto-oncogenes. Biochimie. 1994;76(9):880–886. [PubMed] [Google Scholar]
  • Falvey E, Fleury-Olela F, Schibler U. The rat hepatic leukemia factor (HLF) gene encodes two transcriptional activators with distinct circadian rhythms, tissue distributions and target preferences. EMBO J. 1995 Sep 1;14(17):4307–4317. [PMC free article] [PubMed] [Google Scholar]
  • Delmas V, Laoide BM, Masquilier D, de Groot RP, Foulkes NS, Sassone-Corsi P. Alternative usage of initiation codons in mRNA encoding the cAMP-responsive-element modulator generates regulators with opposite functions. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4226–4230. [PMC free article] [PubMed] [Google Scholar]
  • Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. [PMC free article] [PubMed] [Google Scholar]
  • Geballe AP, Morris DR. Initiation codons within 5'-leaders of mRNAs as regulators of translation. Trends Biochem Sci. 1994 Apr;19(4):159–164. [PubMed] [Google Scholar]
  • Hentze MW. Translational regulation: versatile mechanisms for metabolic and developmental control. Curr Opin Cell Biol. 1995 Jun;7(3):393–398. [PubMed] [Google Scholar]
  • Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell. 1992 Aug 7;70(3):375–387. [PubMed] [Google Scholar]
  • Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 1995 Jan 27;80(2):199–211. [PubMed] [Google Scholar]
  • Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell. 1991 Aug 23;66(4):743–758. [PubMed] [Google Scholar]
  • Jans DA, Moll T, Nasmyth K, Jans P. Cyclin-dependent kinase site-regulated signal-dependent nuclear localization of the SW15 yeast transcription factor in mammalian cells. J Biol Chem. 1995 Jul 21;270(29):17064–17067. [PubMed] [Google Scholar]
  • Nolan GP, Baltimore D. The inhibitory ankyrin and activator Rel proteins. Curr Opin Genet Dev. 1992 Apr;2(2):211–220. [PubMed] [Google Scholar]
  • Blank V, Kourilsky P, Israël A. NF-kappa B and related proteins: Rel/dorsal hom*ologies meet ankyrin-like repeats. Trends Biochem Sci. 1992 Apr;17(4):135–140. [PubMed] [Google Scholar]
  • Beg AA, Baldwin AS., Jr The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev. 1993 Nov;7(11):2064–2070. [PubMed] [Google Scholar]
  • Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988 Oct 28;242(4878):540–546. [PubMed] [Google Scholar]
  • Inoue J, Kerr LD, Rashid D, Davis N, Bose HR, Jr, Verma IM. Direct association of pp40/I kappa B beta with rel/NF-kappa B transcription factors: role of ankyrin repeats in the inhibition of DNA binding activity. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4333–4337. [PMC free article] [PubMed] [Google Scholar]
  • Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins. 1993 Dec;17(4):363–374. [PubMed] [Google Scholar]
  • Ghosh S, Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature. 1990 Apr 12;344(6267):678–682. [PubMed] [Google Scholar]
  • Henkel T, Machleidt T, Alkalay I, Krönke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. [PubMed] [Google Scholar]
  • Beg AA, Finco TS, Nantermet PV, Baldwin AS., Jr Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. Mol Cell Biol. 1993 Jun;13(6):3301–3310. [PMC free article] [PubMed] [Google Scholar]
  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994 Sep 9;78(5):773–785. [PubMed] [Google Scholar]
  • Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 1995 Jul 1;9(13):1586–1597. [PubMed] [Google Scholar]
  • Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell. 1991 Feb 8;64(3):573–584. [PubMed] [Google Scholar]
  • Lin A, Frost J, Deng T, Smeal T, al-Alawi N, Kikkawa U, Hunter T, Brenner D, Karin M. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell. 1992 Sep 4;70(5):777–789. [PubMed] [Google Scholar]
  • Berberich SJ, Cole MD. Casein kinase II inhibits the DNA-binding activity of Max hom*odimers but not Myc/Max heterodimers. Genes Dev. 1992 Feb;6(2):166–176. [PubMed] [Google Scholar]
  • Kapiloff MS, Farkash Y, Wegner M, Rosenfeld MG. Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science. 1991 Aug 16;253(5021):786–789. [PubMed] [Google Scholar]
  • Janknecht R, Hipskind RA, Houthaeve T, Nordheim A, Stunnenberg HG. Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties. EMBO J. 1992 Mar;11(3):1045–1054. [PMC free article] [PubMed] [Google Scholar]
  • Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem. 1991 Aug 15;266(23):15277–15285. [PubMed] [Google Scholar]
  • Binétruy B, Smeal T, Karin M. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature. 1991 May 9;351(6322):122–127. [PubMed] [Google Scholar]
  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature. 1991 Oct 17;353(6345):670–674. [PubMed] [Google Scholar]
  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature. 1991 Dec 12;354(6353):494–496. [PubMed] [Google Scholar]
  • Hibi M, Lin A, Smeal T, Minden A, Karin M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993 Nov;7(11):2135–2148. [PubMed] [Google Scholar]
  • Minden A, Lin A, Smeal T, Dérijard B, Cobb M, Davis R, Karin M. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol. 1994 Oct;14(10):6683–6688. [PMC free article] [PubMed] [Google Scholar]
  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. [PubMed] [Google Scholar]
  • Nakajima T, Kinosh*ta S, Sasagawa T, Sasaki K, Naruto M, Kishimoto T, Akira S. Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2207–2211. [PMC free article] [PubMed] [Google Scholar]
  • Kowenz-Leutz E, Twamley G, Ansieau S, Leutz A. Novel mechanism of C/EBP beta (NF-M) transcriptional control: activation through derepression. Genes Dev. 1994 Nov 15;8(22):2781–2791. [PubMed] [Google Scholar]
  • Williams SC, Baer M, Dillner AJ, Johnson PF. CRP2 (C/EBP beta) contains a bipartite regulatory domain that controls transcriptional activation, DNA binding and cell specificity. EMBO J. 1995 Jul 3;14(13):3170–3183. [PMC free article] [PubMed] [Google Scholar]
  • Wegner M, Cao Z, Rosenfeld MG. Calcium-regulated phosphorylation within the leucine zipper of C/EBP beta. Science. 1992 Apr 17;256(5055):370–373. [PubMed] [Google Scholar]
  • Mahoney CW, Shuman J, McKnight SL, Chen HC, Huang KP. Phosphorylation of CCAAT-enhancer binding protein by protein kinase C attenuates site-selective DNA binding. J Biol Chem. 1992 Sep 25;267(27):19396–19403. [PubMed] [Google Scholar]
  • Wahli W, Martinez E. Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J. 1991 Jun;5(9):2243–2249. [PubMed] [Google Scholar]
  • Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994 Jun;15(3):391–407. [PubMed] [Google Scholar]
  • Beato M, Herrlich P, Schütz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995 Dec 15;83(6):851–857. [PubMed] [Google Scholar]
  • Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell. 1995 Dec 15;83(6):859–869. [PubMed] [Google Scholar]
  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. [PMC free article] [PubMed] [Google Scholar]
  • Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. [PubMed] [Google Scholar]
  • Thummel CS. From embryogenesis to metamorphosis: the regulation and function of Drosophila nuclear receptor superfamily members. Cell. 1995 Dec 15;83(6):871–877. [PubMed] [Google Scholar]
  • Gronemeyer H, Moras D. Nuclear receptors. How to finger DNA. Nature. 1995 May 18;375(6528):190–191. [PubMed] [Google Scholar]
  • Leblanc BP, Stunnenberg HG. 9-cis retinoic acid signaling: changing partners causes some excitement. Genes Dev. 1995 Aug 1;9(15):1811–1816. [PubMed] [Google Scholar]
  • Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell. 1989 Nov 3;59(3):477–487. [PubMed] [Google Scholar]
  • Schwabe JW, Neuhaus D, Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature. 1990 Nov 29;348(6300):458–461. [PubMed] [Google Scholar]
  • Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. [PubMed] [Google Scholar]
  • Knegtel RM, Katahira M, Schilthuis JG, Bonvin AM, Boelens R, Eib D, van der Saag PT, Kaptein R. The solution structure of the human retinoic acid receptor-beta DNA-binding domain. J Biomol NMR. 1993 Jan;3(1):1–17. [PubMed] [Google Scholar]
  • Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM. Structure of the retinoid X receptor alpha DNA binding domain: a helix required for hom*odimeric DNA binding. Science. 1993 May 21;260(5111):1117–1121. [PubMed] [Google Scholar]
  • Rastinejad F, Perlmann T, Evans RM, Sigler PB. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature. 1995 May 18;375(6528):203–211. [PubMed] [Google Scholar]
  • Harding HP, Lazar MA. The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol Cell Biol. 1993 May;13(5):3113–3121. [PMC free article] [PubMed] [Google Scholar]
  • Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse hom*olog of fushi tarazu-factor I. Mol Endocrinol. 1992 Aug;6(8):1249–1258. [PubMed] [Google Scholar]
  • Wilson TE, Fahrner TJ, Milbrandt J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol Cell Biol. 1993 Sep;13(9):5794–5804. [PMC free article] [PubMed] [Google Scholar]
  • McBroom LD, Flock G, Giguère V. The nonconserved hinge region and distinct amino-terminal domains of the ROR alpha orphan nuclear receptor isoforms are required for proper DNA bending and ROR alpha-DNA interactions. Mol Cell Biol. 1995 Feb;15(2):796–808. [PMC free article] [PubMed] [Google Scholar]
  • Pratt WB. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem. 1993 Oct 15;268(29):21455–21458. [PubMed] [Google Scholar]
  • Martinez E, Givel F, Wahli W. The estrogen-responsive element as an inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid-responsive element. EMBO J. 1987 Dec 1;6(12):3719–3727. [PMC free article] [PubMed] [Google Scholar]
  • Klock G, Strähle U, Schütz G. Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature. 1987 Oct 22;329(6141):734–736. [PubMed] [Google Scholar]
  • Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature. 1990 Nov 8;348(6297):166–168. [PubMed] [Google Scholar]
  • Bohen SP, Kralli A, Yamamoto KR. Hold 'em and fold 'em: chaperones and signal transduction. Science. 1995 Jun 2;268(5215):1303–1304. [PubMed] [Google Scholar]
  • Cavaillès V, Dauvois S, L'Horset F, Lopez G, Hoare S, Kushner PJ, Parker MG. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 1995 Aug 1;14(15):3741–3751. [PMC free article] [PubMed] [Google Scholar]
  • Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science. 1994 Jun 3;264(5164):1455–1458. [PubMed] [Google Scholar]
  • Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, Heery D, Gronemeyer H, Chambon P, Losson R. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 1995 May 1;14(9):2020–2033. [PMC free article] [PubMed] [Google Scholar]
  • Lee JW, Ryan F, Swaffield JC, Johnston SA, Moore DD. Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature. 1995 Mar 2;374(6517):91–94. [PubMed] [Google Scholar]
  • vom Baur E, Zechel C, Heery D, Heine MJ, Garnier JM, Vivat V, Le Douarin B, Gronemeyer H, Chambon P, Losson R. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 1996 Jan 2;15(1):110–124. [PMC free article] [PubMed] [Google Scholar]
  • Oñate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354–1357. [PubMed] [Google Scholar]
  • Dalman FC, Koenig RJ, Perdew GH, Massa E, Pratt WB. In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J Biol Chem. 1990 Mar 5;265(7):3615–3618. [PubMed] [Google Scholar]
  • Dalman FC, Sturzenbecker LJ, Levin AA, Lucas DA, Perdew GH, Petkovitch M, Chambon P, Grippo JF, Pratt WB. Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form "docking" complexes with hsp90. Biochemistry. 1991 Jun 4;30(22):5605–5608. [PubMed] [Google Scholar]
  • När AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell. 1991 Jun 28;65(7):1267–1279. [PubMed] [Google Scholar]
  • Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. [PMC free article] [PubMed] [Google Scholar]
  • Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, När AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell. 1991 Dec 20;67(6):1251–1266. [PubMed] [Google Scholar]
  • Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG. RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J. 1992 Apr;11(4):1409–1418. [PMC free article] [PubMed] [Google Scholar]
  • Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature. 1992 Aug 27;358(6389):771–774. [PMC free article] [PubMed] [Google Scholar]
  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub A, Garnier JM, Mader S, et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell. 1992 Jan 24;68(2):377–395. [PubMed] [Google Scholar]
  • Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Nikodem VM, Ozato K. H-2RIIBP (RXR beta) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 1992 Apr;11(4):1419–1435. [PMC free article] [PubMed] [Google Scholar]
  • Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. [PubMed] [Google Scholar]
  • Issemann I, Prince RA, Tugwood JD, Green S. The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol. 1993 Aug;11(1):37–47. [PubMed] [Google Scholar]
  • Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 1995 Jun 1;375(6530):377–382. [PubMed] [Google Scholar]
  • Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature. 1995 Dec 14;378(6558):681–689. [PubMed] [Google Scholar]
  • Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature. 1995 Dec 14;378(6558):690–697. [PubMed] [Google Scholar]
  • Forman BM, Umesono K, Chen J, Evans RM. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell. 1995 May 19;81(4):541–550. [PubMed] [Google Scholar]
  • Damm K, Thompson CC, Evans RM. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. [PubMed] [Google Scholar]
  • Baniahmad A, Köhne AC, Renkawitz R. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor. EMBO J. 1992 Mar;11(3):1015–1023. [PMC free article] [PubMed] [Google Scholar]
  • Baniahmad A, Leng X, Burris TP, Tsai SY, Tsai MJ, O'Malley BW. The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol Cell Biol. 1995 Jan;15(1):76–86. [PMC free article] [PubMed] [Google Scholar]
  • Casanova J, Helmer E, Selmi-Ruby S, Qi JS, Au-Fliegner M, Desai-Yajnik V, Koudinova N, Yarm F, Raaka BM, Samuels HH. Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor. Mol Cell Biol. 1994 Sep;14(9):5756–5765. [PMC free article] [PubMed] [Google Scholar]
  • Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. [PubMed] [Google Scholar]
  • Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 1995 Jun 2;81(5):687–693. [PubMed] [Google Scholar]
  • Hörlein AJ, När AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct 5;377(6548):397–404. [PubMed] [Google Scholar]
  • Kurokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995 Oct 5;377(6548):451–454. [PubMed] [Google Scholar]
  • Perlmann T, Vennström B. The sound of silence. Nature. 1995 Oct 5;377(6548):387–388. [PubMed] [Google Scholar]
  • Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature. 1994 Oct 6;371(6497):528–531. [PubMed] [Google Scholar]
  • Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. [PubMed] [Google Scholar]
  • Kouzarides T, Ziff E. Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature. 1989 Aug 17;340(6234):568–571. [PubMed] [Google Scholar]
  • Vinson CR, Sigler PB, McKnight SL. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science. 1989 Nov 17;246(4932):911–916. [PubMed] [Google Scholar]
  • O'Shea EK, Klemm JD, Kim PS, Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. [PubMed] [Google Scholar]
  • Alber T. Structure of the leucine zipper. Curr Opin Genet Dev. 1992 Apr;2(2):205–210. [PubMed] [Google Scholar]
  • Ellenberger TE, Brandl CJ, Struhl K, Harrison SC. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell. 1992 Dec 24;71(7):1223–1237. [PubMed] [Google Scholar]
  • Busch SJ, Sassone-Corsi P. Dimers, leucine zippers and DNA-binding domains. Trends Genet. 1990 Feb;6(2):36–40. [PubMed] [Google Scholar]
  • Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 Mar;6(3):439–453. [PubMed] [Google Scholar]
  • Fornace AJ, Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. [PMC free article] [PubMed] [Google Scholar]
  • Luethy JD, Holbrook NJ. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Res. 1992 Jan 1;52(1):5–10. [PubMed] [Google Scholar]
  • Price BD, Calderwood SK. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res. 1992 Jul 1;52(13):3814–3817. [PubMed] [Google Scholar]
  • Batchvarova N, Wang XZ, Ron D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J. 1995 Oct 2;14(19):4654–4661. [PMC free article] [PubMed] [Google Scholar]
  • Swillens S, Pirson I. Highly sensitive control of transcriptional activity by factor heterodimerization. Biochem J. 1994 Jul 1;301(Pt 1):9–12. [PMC free article] [PubMed] [Google Scholar]
  • Poli V, Mancini FP, Cortese R. IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell. 1990 Nov 2;63(3):643–653. [PubMed] [Google Scholar]
  • Nolan GP. NF-AT-AP-1 and Rel-bZIP: hybrid vigor and binding under the influence. Cell. 1994 Jun 17;77(6):795–798. [PubMed] [Google Scholar]
  • LeClair KP, Blanar MA, Sharp PA. The p50 subunit of NF-kappa B associates with the NF-IL6 transcription factor. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8145–8149. [PMC free article] [PubMed] [Google Scholar]
  • Stein B, Cogswell PC, Baldwin AS., Jr Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain-bZIP interaction. Mol Cell Biol. 1993 Jul;13(7):3964–3974. [PMC free article] [PubMed] [Google Scholar]
  • Diehl JA, Hannink M. Identification of a C/EBP-Rel complex in avian lymphoid cells. Mol Cell Biol. 1994 Oct;14(10):6635–6646. [PMC free article] [PubMed] [Google Scholar]
  • Jain J, McCaffrey PG, Valge-Archer VE, Rao A. Nuclear factor of activated T cells contains Fos and Jun. Nature. 1992 Apr 30;356(6372):801–804. [PubMed] [Google Scholar]
  • Jain J, Miner Z, Rao A. Analysis of the preexisting and nuclear forms of nuclear factor of activated T cells. J Immunol. 1993 Jul 15;151(2):837–848. [PubMed] [Google Scholar]
  • Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. [PubMed] [Google Scholar]
  • Bengal E, Ransone L, Scharfmann R, Dwarki VJ, Tapscott SJ, Weintraub H, Verma IM. Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell. 1992 Feb 7;68(3):507–519. [PubMed] [Google Scholar]
  • Li L, Chambard JC, Karin M, Olson EN. Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression. Genes Dev. 1992 Apr;6(4):676–689. [PubMed] [Google Scholar]
  • Brindle PK, Montminy MR. The CREB family of transcription activators. Curr Opin Genet Dev. 1992 Apr;2(2):199–204. [PubMed] [Google Scholar]
  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993 Oct 28;365(6449):855–859. [PubMed] [Google Scholar]
  • Arias J, Alberts AS, Brindle P, Claret FX, Smeal T, Karin M, Feramisco J, Montminy M. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature. 1994 Jul 21;370(6486):226–229. [PubMed] [Google Scholar]
  • Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bächinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature. 1994 Jul 21;370(6486):223–226. [PubMed] [Google Scholar]
  • Nordheim A. Transcription factors. CREB takes CBP to tango. Nature. 1994 Jul 21;370(6486):177–178. [PubMed] [Google Scholar]
  • Wagner S, Green MR. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science. 1993 Oct 15;262(5132):395–399. [PubMed] [Google Scholar]
  • Baranger AM, Palmer CR, Hamm MK, Giebler HA, Brauweiler A, Nyborg JK, Schepartz A. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax. Nature. 1995 Aug 17;376(6541):606–608. [PubMed] [Google Scholar]
  • Perini G, Wagner S, Green MR. Recognition of bZIP proteins by the human T-cell leukaemia virus transactivator Tax. Nature. 1995 Aug 17;376(6541):602–605. [PubMed] [Google Scholar]
  • Mendel DB, Khavari PA, Conley PB, Graves MK, Hansen LP, Admon A, Crabtree GR. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science. 1991 Dec 20;254(5039):1762–1767. [PubMed] [Google Scholar]
  • Citron BA, Davis MD, Milstien S, Gutierrez J, Mendel DB, Crabtree GR, Kaufman S. Identity of 4a-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11891–11894. [PMC free article] [PubMed] [Google Scholar]
  • Hansen LP, Crabtree GR. Regulation of the HNF-1 homeodomain proteins by DCoH. Curr Opin Genet Dev. 1993 Apr;3(2):246–253. [PubMed] [Google Scholar]
  • Ficner R, Sauer UH, Stier G, Suck D. Three-dimensional structure of the bifunctional protein PCD/DCoH, a cytoplasmic enzyme interacting with transcription factor HNF1. EMBO J. 1995 May 1;14(9):2034–2042. [PMC free article] [PubMed] [Google Scholar]
  • Tsai MJ, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486. [PubMed] [Google Scholar]
  • Moudgil VK. Phosphorylation of steroid hormone receptors. Biochim Biophys Acta. 1990 Dec 10;1055(3):243–258. [PubMed] [Google Scholar]
  • He J, Furmanski P. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature. 1995 Feb 23;373(6516):721–724. [PubMed] [Google Scholar]
  • Abate C, Patel L, Rauscher FJ, 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990 Sep 7;249(4973):1157–1161. [PubMed] [Google Scholar]
  • Bandyopadhyay S, Gronostajski RM. Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. J Biol Chem. 1994 Nov 25;269(47):29949–29955. [PubMed] [Google Scholar]
  • Arnone MI, Zannini M, Di Lauro R. The DNA binding activity and the dimerization ability of the thyroid transcription factor I are redox regulated. J Biol Chem. 1995 May 19;270(20):12048–12055. [PubMed] [Google Scholar]
  • Ihle JN, Kerr IM. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 1995 Feb;11(2):69–74. [PubMed] [Google Scholar]
  • Kerszberg M, Changeux JP. A model for reading morphogenetic gradients: autocatalysis and competition at the gene level. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5823–5827. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Multiple steps in the regulation of transcription-factor level and activity. (2024)
Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 6121

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.