Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models (2024)

References

Arabameri, A., Asadi, N. O., Saha, S., Roy, J., Pradhan, B., Tiefenbacher, J. P., & Thi Ngo, P. T. (2020). Novel Ensemble Approaches of machine learning techniques in modeling the gully erosion susceptibility. Remote Sensing, 12(11), 1-31. https://doi.org/10.3390/rs12111890[Links]

Arabameri, A., Pradhan, B., Rezaei, K., Yamani, M., Pourghasemi, H. R., & Lombardo, L. (2018). Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function-logistic regression algorithm. Land Degradation & Development, 29(11), 4035-4049. https://doi.org/10.1002/ldr.3151[Links]

Amiri, M., Pourghasemi, H. R., Ghanbarian, G. A., & Afzali, S. F. (2019). Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340, 55-69. https://doi.org/10.1016/j.geoderma.2018.12.042[Links]

Aertsen, W., Kint, V., Orshoven, J. V., Õzkan, K. & Muys, B. (2010). Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8), 1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007[Links]

Althuwaynee, O. F., Pradhan, B., Park, H. J. & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21-36. https://doi.org/10.1016/j.catena.2013.10.011[Links]

Bell, J. C., Butler, C. A. & Thompson, J. A. (1995). Soil terrain modeling for site-specific agricultural management. In: Robert, P. C., Rust, R. H., Larson, W. E.(Eds.), Site-Specific Management for Agricultural Systems. American Society of Agronomy, Madison, WI, p. 209.[Links]

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D. & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuses reflectance spectroscopy. Geoderma, 132(2-3), 273-290. https://doi.org/10.1016/j.geoderma.2005.04.025[Links]

Carranza, E. J. M., Woldai, T. & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aqua-marine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research, 14(1), 47-63. https://doi.org/10.1007/s11053-005-4678-9[Links]

Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V. & Mãrker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology, 204(1), 399-411. https://doi.org/10.1016/j.geomorph.2013.08.021[Links]

Chaplot, V., Coadou, B. E., Silvera, N., & Valentinb, C. (2005). Spatial and temporal assessment of linear erosion in catchment under sloping lands of Northern Laos. Catena, 63(2-3), 167-184. https://doi.org/10.1016/j.catena.2005.06.003[Links]

Chen, W., Lei, X., Chakrabortty, R., Pal, S. C., Sahana, M. & Janizadeh, S. (2021). Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. Journal of Environmental Management, 284, 112015-112015. https://doi.org/10.1016/jjenvman.2021.112015[Links]

Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Springer, Berlin, Heidelberg, 38(2), 325-339.[Links]

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77 (4), 802-813. http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x[Links]

Ekholm, P., & Lehtoranta, J. (2012). Does control of soil erosion inhibit aquatic eutrophication. Journal of Environmental Management , 93(1), 140-146. https://doi.org/10.1016/j.jenvman.2011.09.010[Links]

Fox, G. A., Sheshukov, A., Cruse, R., Kolar, R. L., Guertault, L., Gesch, K. R., & Dutnell, R. C. (2016). Reservoir sedimentation and upstream sediment sources: perspectives and future research needs on stream bank and gully erosion. Journal of Environmental Management , 57(5), 945-955. https://doi.org/10.1007/s00267-016-0671-9[Links]

Gayen, A., Pourghasemi, H. R., Saha, S., Keesstra, S. & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment, 668, 124-138. https://doi.org/10.1016Zj.scitotenv.2019.02.436[Links]

Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H. R., & Van Oost, K., (2019). Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment , 664, 1117-1132. https://doi.org/10.1016/j.scitotenv.2019.02.093[Links]

Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A., & Mansor, S. (2017). Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk, 9(1), 49-69. https://doi.org/10.1080/19475705.2017.1407368[Links]

Kavzoglu, T., Sahin, E.K. & Colkesen, I. (2013). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425-439. https://doi.org/10.1007/s10346-013-0391-7[Links]

Kursa, M. B., Jankowski, A., & Rudnicki, W. R. (2010). Boruta-a system for feature selection. Fundamenta Informaticae, 101(4), 271-285. https://doi.org/10.3233/FI-2010-288[Links]

Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. Forest, 2(3), 18-22.[Links]

Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., & Mosavi, A. (2020). GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing , 12, 1-25. https://doi.org/10.3390/rs12152478[Links]

Lee, M. J., Choi, J. W., Oh, H. J., Won, J. S., Park, I., & Lee, S. (2012). Ensemble based landslide susceptibility maps in Jinbu area, Korea. Environmental Earth Sciences, 67, 23-37. https://doi.org/10.1007/s12665-011-1477-y[Links]

Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboye-doff, M., & Kanevski, M. (2014). Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences, 46(1), 33-57. http://dx.doi.org/10.1007/s11004-013-9511-0[Links]

Moore, I. D., Gessler, P. E., Nielsen, G. A. E. & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443-452. https://doi.org/10.2136/ss-saj1993.03615995005700020026x[Links]

Marjanovic, M., Kovacevic, M., Bajat, B. & Vozenílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225-234. https://doi.org/10.1016/j.eng-geo.2011.09.006[Links]

Naghibi, S. A., Pourghasemi, H. R. & Dixon, B. (2015). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1-27. https://dx.doi.org/10.1007/s10661-015-5049-6[Links]

Ollobarren, P., Capra, A., Gelsomino, A., & La Spada, C., (2016). Effects of ephemeral gully erosion on soil degradation in a cultivated area in Sicily (Italy). Catena, 145, 334-345. https://doi.org/10.1016/j.catena.2016.06.031[Links]

Park, N. W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based land slide susceptibility analysis. Environmental Earth Sciences , 62 (2), 367-376. https://doi.org/10.1007/s12665-010-0531-5[Links]

Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365. https://doi.org/10.1016/j.cageo.2012.08.023[Links]

Pourghasemi, H. R., Yousefi, S., Kornejady, A. & Cerda, A. (2017). Applying different new ensemble data mining techniques for Gully erosion mapping with Geographical Information Systems. Science of the Total Environment , 609, 764-775. https://doi.org/10.1016/j.scitotenv.2017.07.198[Links]

Pourghasemi, H. R., Sadhasivam, N., Kariminejad, N., & Collins, A. L. (2020). Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process. Geoscience Frontiers, 11, 2207-2219. https://doi.org/10.1016/j.gsf.2020.03.005[Links]

Poesen, J., Vandekerckhove, L., Nachtergaele, J., Oostwoud Wijdenes, D., Verstraeten, G. & van Wesemael, B. (2002). Gully erosion in dryland environments. In: Bull, L. J., Kirkby, M. J. (Eds.). Dryland Rivers. Hydrology and Geomorphology of Semi-Arid Channels. Wiley, Chichester, pp, 229-262.[Links]

Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R. & Feizi-zadeh, B. (2017). Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118-137. https://doi.org/10.1016/j.geomorph.2017.09.006[Links]

Razavi-Termeh, S. V., Sadeghi-Niaraki, A. & Choi, S. M. (2020). Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics, Natural Hazards and Risk , 11, 821-845. https://doi.org/10.1080/19475705.2020.1753824[Links]

Radula, M. W., Szymura, T. H. & Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values. Ecological Indicators, 85, 172-179. https://doi.org/10.1016/j.ecolind.2017.10.011[Links]

Su, Z. A., Zhang, J. H. & Nie, X. J. (2010). Effect of soil erosion on soil proper-ties and crop yields on slopes in the Sichuan basin, China. Pedosphere, 20 (6), 736-746. https://doi.org/10.1016/S1002-0160(10)60064-1[Links]

Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press, Princeton.[Links]

Saha, S., Roy, J., Arabameri, A., Blaschke, T., & Tien Bui, D. (2020). Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India. Sensors, 20(5), 1-25. https://doi.org/10.3390/s20051313[Links]

Xiao, H., Li, Z., Dong, Y., Chang, X., Deng, L., Huang, J., & Liu, Q. (2017). Changes in microbial communities and respiration following the revegetation of eroded soil. Agriculture, Ecosystems & Environment, 246, 30-37. https://doi.org/10.1016/j.agee.2017.05.026[Links]

Yesilnacar, E. K. (2005). The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey (Ph.D Thesis). Department of Geomatics, University of Melbourne, pp. 423.[Links]

Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environment , 557, 838-850. https://doi.org/10.1016/j.scitotenv[Links]

Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A. K., Pourghasemi, H. R., Zakeri, M. A. & Sadighi, F. (2018). Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena, 161, 1-13. https://doi.org/10.1016/j.catena.2017.10.010 [Links]

Factors affecting topographic thresholds in gully erosion occurrence and its management using predictive machine learning models (2024)
Top Articles
Latest Posts
Article information

Author: Prof. An Powlowski

Last Updated:

Views: 5930

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Prof. An Powlowski

Birthday: 1992-09-29

Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

Phone: +26417467956738

Job: District Marketing Strategist

Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.