Curved Laser Beams Just Around the Bend (2024)

'; } else { caption += $(this).find('figcaption').html() + getDetailsURL($(this).parent()) + getDownloadURL($(this).parent()) + showFBShare(); } } else { if (isMobile()) { caption += '

' + '

' + '

' + '

' + '

' + $(this).find('figcaption p').html() + '

' + getDetailsURL($(this).parent()) + getDownloadURL($(this).parent()) + showFBShare() + '

' + '

' + '

SHOW PHOTO DETAILS

'; } else { caption += '

' + '

' + $(this).find('figcaption p').html() + '

' + getDetailsURL($(this).parent()) + getDownloadURL($(this).parent()) + showFBShare(); } } return caption; }, afterLoad: function (instance, current) { //initial desktop view $(".fancybox-caption__body").addClass("a2a_kit").addClass("a2a_default_style"); if (isMobile()) $(".fancybox-caption__body").addClass("mobile"); }, afterShow: function (instance, current) { var $currentSlide = $(".fancybox-slide.fancybox-slide--current").parent().parent(); if (isMobile()) $currentSlide.find(".fancy-detail-link").on("touchstart", function () { captionToggle(); }); }, afterClose: function () { } })); let debounceTimer; $(window).on("resize", function (event) { if (isMobile()) return; if ($(".af3-caption-body").length > 0 && $(".af3-caption-body").css("height") != undefined) { event.stopImmediatePropagation(); $(".fancybox-caption__body").removeClass("half"); isDesktopInit = false; captionToggle(); debounceTimer = setTimeout(function () { clearTimeout(debounceTimer); debounceTimer = null; recalculateImageSize(); }, 1000); } }); function recalculateImageSize() { // Fancy box miscalculates because of race conditions with new layout var origImgWth = $(".fancybox-image").prop("naturalWidth"); var origImgHgt = $(".fancybox-image").prop("naturalHeight"); var winWth = $(window).innerWidth(); var winHgt = $(window).innerHeight() var ratio = Math.min(winWth / origImgWth, winHgt / origImgHgt); var newImgWth = (origImgWth * ratio); var newImgHgt = (origImgHgt * ratio); var dstTop = Math.floor((winHgt - newImgHgt)) / 2; var dstLeft = Math.floor((winWth - newImgWth)) / 2; $(".fancybox-content").removeAttr("style"); $(".fancybox-content").css("width", newImgWth + "px"); $(".fancybox-content").css("height", newImgHgt + "px"); $(".fancybox-content").css("transform", "translate(" + dstLeft + "px, " + dstTop + "px)"); } function captionToggle() { if ($(".fancybox-caption__body").hasClass("af3-caption-body")) { $(".af3-caption-body").stop(true, false).animate({ height: "0vh" }, 800, function () { // Animation complete. closeDetails(); }); $(".fancy-photo-detail-link").html($(".fancy-photo-detail-link").html().replace("CLOSE", "SHOW")); } else { $(".fancybox-caption__body").addClass("af3-caption-body"); $(".af3-caption-body").addClass(detailSize); $(".af3-caption-body").animate({ height: displayhgt }, 800); $(".fancybox-caption").addClass("af3-caption-bg"); $(".base-caption-info").addClass("full-height"); $(".fancy-photo-detail-link").addClass("photo-detail-gradient"); $(".fancybox-button").css("display", "none"); $(".fancy-photo-detail-link").html($(".fancy-photo-detail-link").html().replace("SHOW", "CLOSE")); $(".fancybox-caption__body").prepend(prependClosing()); $(".closing-box, .closingx").on("touchstart", function () { captionToggle(); }); } } function getDetailsURL(fbObj) { return 'DETAILS'; } function getDownloadURL(fbObj) { return 'DOWNLOAD'; } function showFBShare() { return ''; } function closeDetails() { $(".af3-caption-body").removeClass(detailSize); $(".fancybox-caption__body").removeClass("af3-caption-body"); $(".fancybox-caption").removeClass("af3-caption-bg"); $(".base-caption-info").removeClass("full-height"); $(".fancy-photo-detail-link").removeClass("photo-detail-gradient"); $(".fancybox-button").css("display", "block"); if (detailSize === "half") { detailSize = "full"; displayhgt = "90vh"; $(".fancybox-caption").removeClass("desktop-init"); } } function prependClosing() { return '

' } });

  • Published
  • By Maria Callier
  • AF Office of Scientific Research
ARLINGTON, Virginia -- Research exploring the use of curved laser beams in the space environment may one day enable charged particles to be accelerated and high-power microwaves and radio frequency waves to be guided while in the air, advantageous capabilities for the Air Force in terms of remotely detecting explosives and chemical/biological agents. Air Force Research Laboratory-funded investigations of this emergent physics-based technology are under way at the University of Arizona's College of Optical Sciences and the Arizona Center for Mathematical Sciences under the guidance of Dr's. Pavel Polynkin and Jerry Moloney, respectively.

In an article published in Science magazine, Dr. Moloney--who conducted his research in collaboration with Professor Demetrios Christodoulides and others at the University of Central Florida--explains laser beam bending as a process involving a combination of waves, where one wave leads (carrying most of the beam's intensity) and many, smaller waves trail the leader. Interference occurring among these trailing waves is such that the leading wave curves in one direction while the tail bends the opposite way.

When powerful laser pulses reach sufficient intensity, they form filaments (i.e., peculiar, self-guiding beams of light). The utility of these filaments relies on a means to control their varying locations and shapes. For instance, some laser beams (termed Bessel beams) produce longer, plasma channels, whereas self-bending Airy beams generate curved light filaments and plasma channels in the air. Airy beams also exhibit a self-healing property; their capacity for quickly reassembling themselves after being blocked or distorted translates to distortion-free propagation through turbulence and fog.

The primary challenges for the physicists pertain to ensuring that beam-curving effects are useful in real-life remote applications. Accordingly, they are focused on devising an innovative mechanism for extending light filaments and plasma channels over distances. The scientists also plan further examination of the physics underlying the creation of light filaments and plasma channels in environments where they can successfully duplicate varying atmospheric conditions. To this end, AFRL-provided expertise will assist the university scientists in gaining a more complete understanding of this complex phenomenon and its manipulation.

Curved Laser Beams Just Around the Bend (2024)
Top Articles
Latest Posts
Article information

Author: Mr. See Jast

Last Updated:

Views: 6490

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.