Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests (2024)

1. Greenleaf S.S., Kremen C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA. 2006;103:13890–13895. doi:10.1073/pnas.0600929103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Fratellone P.M. Apitherapy Products for Medicinal Use. J. Nutr. Food Sci. 2015;5 doi:10.1089/acm.2015.0346. [PubMed] [CrossRef] [Google Scholar]

3. Ali M.A.A.-S.M. Studies on bee venom and its medical uses. Int. J. Adv. Res. Technol. 2012;1:69–83. [Google Scholar]

4. El-Wahab S.D.A., Eita L.H. The effectiveness of live bee sting acupuncture on depression. J. Nurs. Health Sci. 2015;4:19–27. [Google Scholar]

5. Trumbeckaite S., Dauksiene J., Bernatoniene J., Janulis V. Knowledge, attitudes, and usage of apitherapy for disease prevention and treatment among undergraduate pharmacy students in Lithuania. Evid.-Based Complement. Altern. Med. 2015;9 doi:10.1155/2015/172502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Hellner M., von Georgi D.W.R., Münstedt K. Apitherapy: Usage and experience in German beekeepers. Evid.-Based Complement. Altern. Med. 2007;5:475–479. doi:10.1093/ecam/nem052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Lee J.A., Son M.J., Choi J., Yun K.J., Jun J.H., Lee M.S. Bee venom acupuncture for rheumatoid arthritis: A systematic review protocol. Bmj Open. 2014;4 doi:10.1136/bmjopen-2013-004602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Zhang S., Liu Y., Ye Y., Wang X.R., Lin L.T., Xiao L.Y., Zhou P., Shi G.X., Liu C.Z. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon. 2018;148:64–73. doi:10.1016/j.toxicon.2018.04.012. [PubMed] [CrossRef] [Google Scholar]

9. Moreno M., Giralt E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins. 2015;7:1126–1150. doi:10.3390/toxins7041126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Bellik Y. Bee Venom: Its potential use in alternative medicine. Anti-Infect. Agents. 2015;13:3–16. doi:10.2174/2211352513666150318234624. [CrossRef] [Google Scholar]

11. Jo M., Park M.H., Kollipara P.S., An B.J., Song H.S., Han S.B., Kim J.H., Song M.J., Hong J.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol. 2012;258:72–81. doi:10.1016/j.taap.2011.10.009. [PubMed] [CrossRef] [Google Scholar]

12. Rady I., Siddiqui I.A., Rady M., Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16–31. doi:10.1016/j.canlet.2017.05.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Park M.H., Choi M.S., Kwak D.H., Oh K.W., Yoon D.Y., Han S.B., Song H.S., Song M.J., Hong J.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate. 2011;71:801–812. doi:10.1002/pros.21296. [PubMed] [CrossRef] [Google Scholar]

14. Hood J.L., Jallouk A.P., Campbell N., Ratner L., Wickline S.A. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther. 2013;18:95–103. doi:10.3851/IMP2346. [PubMed] [CrossRef] [Google Scholar]

15. Bilò M.B., Bonifazi F. The natural history and epidemiology of insect venom allergy: Clinical implications. Clin. Exp. Allergy. 2009;39:1467–1476. doi:10.1111/j.1365-2222.2009.03324.x. [PubMed] [CrossRef] [Google Scholar]

16. Golden D.B.K. Insect sting anaphylaxis. Immunol. Allergy Clin. North. Am. 2007;27:261. doi:10.1016/j.iac.2007.03.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Mingomataj E.Ç., Bakiri A.H. Episodic hemorrhage during honeybee venom anaphylaxis: Potential mechanisms. J. Investig. Allergol. Clin. Immunol. 2012;22:237–244. [PubMed] [Google Scholar]

18. Kaplan A.P. Kinins, airway obstruction, and anaphylaxis. Chem. Immunol. Allergy. 2010;95:67–84. [PubMed] [Google Scholar]

19. Mingomataj E., Bakiri A. The inhibition of kallikrein-bradykinin pathway may be useful in the reduction of allergic reactions during honeybee venom immunotherapy. J. Med. Hypotheses Ideas. 2009;3:10. [Google Scholar]

20. Ziai M.R., Russek S., Wang H.C., Beer B., Blume A.J. Mast cell degranulating peptide: A multi-functional neurotoxin. J. Pharm. Pharmacol. 1990;42:457–461. doi:10.1111/j.2042-7158.1990.tb06595.x. [PubMed] [CrossRef] [Google Scholar]

21. Chen J., Guan S.M., Sun W., Fu H. Melittin, the Major Pain-Producing Substance of Bee Venom. Neurosci Bull. 2016;32 doi:10.1007/s12264-016-0024-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Raghuraman H., Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007;27:189–223. doi:10.1007/s10540-006-9030-z. [PubMed] [CrossRef] [Google Scholar]

23. Pino-Angeles A., Lazaridis T. Effects of peptide charge, orientation, and concentration on melittin transmembrane pores. Biophysj. J. 2018;114:2865–2874. doi:10.1016/j.bpj.2018.05.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Lee M.T., Sun T.L., Hung W.C., Huang H.W. Process of inducing pores in membranes by melittin. PNAS. 2013;110:14243–14248. doi:10.1073/pnas.1307010110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Zarrinnahad H., Mahmoodzadeh A., Hamidi M.P., Mahdavi M., Moradi A., Bagheri K.P., Shahbazzadeh D. Apoptotic effect of melittin purified from iranian honey bee venom on human cervical cancer heLa cell line. Intj. Pept Res. Ther. 2018;24:563–570. doi:10.1007/s10989-017-9641-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Keith D.J., Eshleman A.J., Janowsky A. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane spanning proteins. Eur. J. Pharmacol. 2011;650:501–510. doi:10.1016/j.ejphar.2010.10.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Bae G., Bae H. Anti-Inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules. 2016;21:616. [PMC free article] [PubMed] [Google Scholar]

28. Son D.J., Lee J.W., Lee Y.H., Song H.S., Lee C.K., Hong J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharm. Ther. 2007;115:246–270. doi:10.1016/j.pharmthera.2007.04.004. [PubMed] [CrossRef] [Google Scholar]

29. Kim J.Y., Kim K.H., Lee W., An H.J., Lee S.J., Han S.M., Lee K.G., Park Y.Y., Kim K.S., Lee Y.S., et al. Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway. Vasc. Pharmacol. 2015;70 doi:10.1016/j.vph.2014.12.004. [PubMed] [CrossRef] [Google Scholar]

30. Modzelewska B., Kostrzewska A., Sipowicz M., Kleszczewski T., Batra S. Apamin inhibits NO-induced relaxation of the spontaneous contractile activity of the myometrium from non-pregnant women. Reprod. Biol. Endocrinol. 2003;1:8. [PMC free article] [PubMed] [Google Scholar]

31. Hanson J.M., Morley J. Anti-inflammatory property of 401 (MCD-peptide), a peptide from the venom of the bee Apis mellifera (L.) Br. J. Pharmacol. 1974;50:383–392. doi:10.1111/j.1476-5381.1974.tb09613.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Banks B.E., Dempsey C.E., Vernon C.A., Warner J.A., Ymey J. Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo. Br. J. Pharmacol. 1990;99:350–354. doi:10.1111/j.1476-5381.1990.tb14707.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Cherniack E.P., Govorushko S. To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon. 2018;154:74–78. doi:10.1016/j.toxicon.2018.09.013. [PubMed] [CrossRef] [Google Scholar]

34. Jung S.Y., Lee K.W., Choi S.M., Yang E.J. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells. Toxins. 2015;7:3715–3726. doi:10.3390/toxins7093715. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Samel M., Vija H., Kurvet I., Künnis-Beres K., Trummal K., Subbi J., Kahru A., Siigur J. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana Venom with Platelets, Bacterial and Cancer Cells. Toxins. 2013;5:203–223. doi:10.3390/toxins5020203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Leandro L.F., Mendes C.A., Casemiro L.A., Vinholis A.H., Cunha W.R., De Almeida R., Martins C.H. Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. An. Acad. Bras. Cienc. 2015;87:147–155. doi:10.1590/0001-3765201520130511. [PubMed] [CrossRef] [Google Scholar]

37. Frangieh J., Salma Y., Haddad K., Mattei C., Legros C., Fajloun Z., El Obeid D. First Characterization of The Venom from Apis mellifera syriaca, A Honeybee from The Middle East Region. Toxins. 2019;11:191. doi:10.3390/toxins11040191. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Lu Z.M., Xie F., Fu H., Liu M.G., Cao F.L., Hao J., Chen J. Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochem. Res. 2008;33:2085–2091. doi:10.1007/s11064-008-9689-6. [PubMed] [CrossRef] [Google Scholar]

39. Park S., Baek H., Jung K.H., Lee G., Lee H., Kang G.H., Lee G., Bae H. Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. Immun. Inflamm. Dis. 2015;3:386–397. doi:10.1002/iid3.76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Ye M., Chung H.S., Lee C., Yoon M.S., Yu A.R., Kim J.S., Hwang D.S., Shim I., Bae H. Neuroprotective effects of bee venomphospholipase A2 in the 3xTg AD mousemodel of Alzheimer’s disease. J. Neuroinflamm. 2016;13:10. [PMC free article] [PubMed] [Google Scholar]

41. Kim K.H., Lee S.Y., Shin J., Hwang J.T., Jeon H.N., Bae H. Dose-Dependent Neuroprotective Effect of Standardized Bee Venom Phospholipase A2 Against MPTP-Induced Parkinson’s Disease in Mice. Front. Aging Neurosci. 2019;11 doi:10.3389/fnagi.2019.00080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Chung E.S., Lee G., Lee C., Ye M., Chung H.S., Kim H., Bae S.J., Hwang D.S., Bae H. Bee venom phospholipase A2, a novel Foxp3+ regulatory T cell inducer, protects dopaminergic neurons by modulating neuroinflammatory responses in a mouse model of Parkinson’s Disease. J. Immunol. 2015;195:4853–4860. doi:10.4049/jimmunol.1500386. [PubMed] [CrossRef] [Google Scholar]

43. Topchiyeva T., Mammadova F.Z. The seasonal activity of hyaluronidase in venom of a honey bee (Apis mellifera L. caucasica) in various regions of Azerbaijan. J. Entomol. Zool. Stud. 2016;4:1388–1391. [Google Scholar]

44. Hossen M.S., Shapla U.M., Gan S.H., Khalil M.I. Impact of Bee Venom Enzymes on Diseases and Immune Responses. Molecules. 2017;22:25. doi:10.3390/molecules22010025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms Underlying Inflammation in Neurodegeneration. Cell. 2010;140:918–934. doi:10.1016/j.cell.2010.02.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Khalil W.S., Khalil E.A.G. Immune response modifying effects of bee venom protein [Melittin]/Autoclaved, L. donovani complex in CD1 Mice: The search for new vaccine adjuvants. J. Vaccines Vaccin. 2017;8:2. [Google Scholar]

47. Park H.J., Son D.J., Oh K.W., Kim K.H., Song H.S., Kim G.J., Oh G.T., Yoon D.Y., Hong J.T. Inhibition of inflammation mediator generation by suppression of NF-kB through interaction with the p50 subunit. Arthritis Rheum. 2004;50:504–3515. doi:10.1002/art.20626. [PubMed] [CrossRef] [Google Scholar]

48. Kim W.H., An H.J., Kim J.Y., Gwon M.G., Gu H., Jeon M., Kim M.K., Han S.M., Park K.K. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes. Molecules. 2018;23:332. doi:10.3390/molecules23020332. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Ong P.Y., Leung D.Y.M. Bacterial and viral infections in atopic dermatitis: A comprehensive review. Clin. Rev. Allergy Immunol. 2016;51:329–337. doi:10.1007/s12016-016-8548-5. [PubMed] [CrossRef] [Google Scholar]

50. Kim Y., Lee Y.W., Kim H., Chung D.K. Bee venom alleviates atopic dermatitis symptoms through the upregulation of decay-accelerating factor (DAF/CD55) Toxins. 2019;11:239. doi:10.3390/toxins11050239. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Shin D., Choi W., Bae H. Bee venom Phospholipase A2 alleviate house dust mite-induced atopic dermatitis-like skin lesions by the CD206 mannose receptor. Toxins. 2018;10:146. doi:10.3390/toxins10040146. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Goldman J.G., Williams-Gray C., Barker R.A., Duda J.E., Galvin J.E. The spectrum of cognitive impairment in Lewy body diseases. Mov. Disord. 2014;29:217–231. doi:10.1002/mds.25866. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Aarsland D., Creese B., Politis M., Chaudhuri K.R., Ffytche D.H., Weintraub D., Ballard C. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 2017;13:217–231. doi:10.1038/nrneurol.2017.27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Iakovakis D., Hadjidimitriou S., Charisis V., Bostantzopoulou S., Katsarou Z., Hadjileontiadis L.J. Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease. Sci. Rep. 2018 doi:10.1038/s41598-018-25999-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Tanner C.M., Kamel F., Ross G.W., Hoppin J.A., Goldman S.M., Korell M., Marras C., Bhudhikanok G.S., Kasten M., Chade A.R., et al. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 2011;119:866–872. doi:10.1289/ehp.1002839. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Khalil W.K.B., Assaf N., ElShebiney S.A., Salem N.A. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochem. Int. 2015;80:79–86. doi:10.1016/j.neuint.2014.11.008. [PubMed] [CrossRef] [Google Scholar]

57. Alvarez-Fischer D., Noelker C., Vulinović F., Grünewald A., Chevarin C., Klein C., Oertel W.H., Hirsch E.C., Michel P.P., Hartmann A. Bee Venom and Its Component Apamin as Neuroprotective Agents in a Parkinson Disease Mouse Model. PLoS ONE. 2013:8. doi:10.1371/journal.pone.0061700. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Aksoz E., Gocmez S., Sahin T.D., Aksit D., Aksit H., Utkan T. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharm. Rep. 2019;71:818–825. doi:10.1016/j.pharep.2019.04.015. [PubMed] [CrossRef] [Google Scholar]

59. Sabri O., Sabbagh M.N., Seibyl J., Barthel H., Akatsu H., Ouchi Y., Senda K., Murayama S., Ishii K., Takao M., et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimers Dement. 2015;11:964–974. doi:10.1016/j.jalz.2015.02.004. [PubMed] [CrossRef] [Google Scholar]

60. Baek H., Lee C., Choi D.B., Kim N.S., Kim Y.S., Ye Y.J., Kim Y.S., Kim J.S., Shim I., Bae H. Bee venom phospholipase A2 ameliorates Alzheimer’s disease pathology in Aβ vaccination treatment without inducing neuro-inflammation in a 3xTg-AD mouse model. Sci. Rep. 2018;8 doi:10.1038/s41598-018-35030-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Kakuda N., Miyasaka T., Iwasaki N., Nirasawa T., Wada-Kakuda S., Takahashi-Fujigasaki J., Murayama S., Ihara Y., Ikegawa M. Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol. Commun. 2017;5 doi:10.1186/s40478-017-0477-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Van Eldik L.J., Carrillo M.C., Cole P.E., Feuerbach D., Greenberg B., Hendrix J.A., Kennedy M., Kozauer N., Margolin R.A., Molinuevo J.L., et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. 2016;2:99–109. doi:10.1016/j.trci.2016.05.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018;4:575–590. doi:10.1016/j.trci.2018.06.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Terry A.V., Buccafusco J.J. The Cholinergic Hypothesis of Age and Alzheimer’s Disease-Related Cognitive Deficits: Recent Challenges and TheirImplications for Novel Drug Development. J. Pharm. Exp. Ther. 2003;306:821–827. doi:10.1124/jpet.102.041616. [PubMed] [CrossRef] [Google Scholar]

65. Rajagopalan V., Pioro E.P. Unbiased MRI analyses identify micropathologic differences between upper motor neuron-predominant ALS phenotypes. Front. Neurosci. 2019;13 doi:10.3389/fnins.2019.00704. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Boillée S., Yamanaka K., Lobsiger C.S., Copeland N.G., Jenkins N.A., Kassiotis G., Kollias G., Cleveland D.W. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312:1389–1392. doi:10.1126/science.1123511. [PubMed] [CrossRef] [Google Scholar]

67. Jaarsma D., Haasdijk E.D., Grashorn J.A.C., Hawkins R., Van Duijn W., Verspaget W.H., London J., Holstege J.C. Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates MotoneuronDisease in Mice Expressing a Familial AmyotrophicLateral Sclerosis Mutant SOD1. Neurobiol. Dis. 2000;7:623–643. doi:10.1006/nbdi.2000.0299. [PubMed] [CrossRef] [Google Scholar]

68. Yang E.J., Jiang J.H., Lee S.M., Yang S.C., Hwang H.S., Lee M.S., Choi S.M. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J. Neuroinflamm. 2010;7 doi:10.1186/1742-2094-7-69. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Cai M.D., Choi S.M., Yang E.J. The effects of bee venom acupuncture on the central nervous system and muscle in an animal hSOD1G93A mutant. Toxins. 2015;7:846–858. doi:10.3390/toxins7030846. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Jung G.B., Huh J.-E., Lee H.J., Kim D., Lee G.J., Park H.K., Lee J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express. 2018;9:5703–5718. doi:10.1364/BOE.9.005703. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Lim H.N., Baek S.B., Jung H.J. Bee venom and its peptide component melittin suppress growth and migration of Melanoma Cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules. 2019;24:929. doi:10.3390/molecules24050929. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Hong J., Lu X., Deng Z., Xiao S., Yuan B., Yang X. How Melittin inserts into cell membrane: Conformational changes, inter-peptide cooperation, and disturbance on the membrane. Molecules. 2019;24:1775. doi:10.3390/molecules24091775. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Liu S., Yu M., He Y., Xiao L., Wang F., Song C., Sun S., Ling C., Xu Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology. 2008;47:1964–1973. doi:10.1002/hep.22240. [PubMed] [CrossRef] [Google Scholar]

74. Saidemberg D.M., Baptista-Saidemberg N.B., Palma M.S. Chemometric analysis of Hymenoptera toxins and defensins: A model for predicting the biological activity of novel peptides from venoms and hemolymph. Peptides. 2011;32:1924–1933. doi:10.1016/j.peptides.2011.08.001. [PubMed] [CrossRef] [Google Scholar]

75. Liu X., Chen D., Xie L., Zhang R. Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J. Pharm Pharmacol. 2002;54:1083–1089. doi:10.1211/002235702320266235. [PubMed] [CrossRef] [Google Scholar]

76. Wang C., Chen T., Zhang N., Yang M., Li B., Lü X., Cao X., Ling C. Melittin, a Major Component of Bee Venom, Sensitizes Human Hepatocellular Carcinoma Cells to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced. Apoptosis by Activating CaMKII-TAK1-JNK/p38 and Inhibiting IkB alpha Kinase-NFkB. J. Biol Chem. 2009;284:3804–3813. doi:10.1074/jbc.M807191200. [PubMed] [CrossRef] [Google Scholar]

77. Zheng J., Lee H.L., Ham Y.W., Song H.S., Song M.J., Hong J.T. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget. 2015;6:44437–44451. doi:10.18632/oncotarget.6295. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Zuazo-Gaztelu I., Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front. Oncol. 2018;8 doi:10.3389/fonc.2018.00248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Rajabi M., Mousa S.A. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5:34. doi:10.3390/biomedicines5020034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Gülmez Y., Aydın A., Can I., Tekin S., Cacan E. Cellular toxicity and biological activities of honey bee (Apis mellifera L.) venom. Marmara Pharm. J. 2017;21:51–260. [Google Scholar]

81. Soman N.R., Baldwin S.L., Hu G., Marsh J.N., Lanza G.M., Heuser J.E., Arbeit J.M., Wickline S.A., Schlesinger P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Investig. 2009;119:2830–2842. doi:10.1172/JCI38842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Cheng B., Thapa B., Remant K.C., Xu P. Dual secured nano-melittin for the safe and effective eradication of cancer cells. J. Mater. Chemb. 2015;3:25–29. doi:10.1039/C4TB01401D. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Jallouk A.P., Moley K.H., Omurtag K., Hu G., Lanza G.M., Wickline S.A., Hood J.L. Nanoparticle Incorporation of Melittin Reduces Sperm and vagin*l Epithelium Cytotoxicity. PLoS ONE. 2014:9. doi:10.1371/journal.pone.0095411. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Hegazi A., Abdou A.M., EI-Moez S.I., Abd Allah F. Evaluation of the antibacterial activity of bee venom from different sources. World Appl. Sci. J. 2014;30:266–270. [Google Scholar]

85. Socarras K.M.T., Theophilus P.A.S., Torres J.P., Gupta K., Sapi E. Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi. Antibiot. (Basel) 2017;6 doi:10.3390/antibiotics6040031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Perumal Samy R., Gopalakrishnakone P., Thwin M.M., Chow T.K., Bow H., Yap E.H., Thong T.W. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. J. Appl Microbiol. 2007;102:650–659. doi:10.1111/j.1365-2672.2006.03161.x. [PubMed] [CrossRef] [Google Scholar]

87. Zolfa*gharian H., Babaie M. Antimicrobial activity of bee venom and Melittin against Borrelia burgdorferi. J. Pharmacopuncture. 2016;19:225–230. doi:10.3831/KPI.2016.19.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Uddin M.B., Lee B.H., Nikapitiya C., Kim J.H., Kim T.H., Lee H.C., Kim C.G., Lee J.S., Kim C.J. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol. 2016;54:853–866. doi:10.1007/s12275-016-6376-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Bachis A., Cruz M.I., Mocchetti I. M-tropic HIV envelope protein gp120 exhibits a different neuropathological profile than T-tropic gp120 in rat striatum. Eur. J. Neurosci. 2010;32 doi:10.1111/j.1460-9568.2010.07325.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Cecilio A.B., Caldas S., Oliveira R.A., Santos A.S., Richardson M., Naumann G.B., Schneider F.S., Alvarenga V.G., Estevão-Costa M.I., Fuly A.L., et al. Molecular characterization of Lys49 and Asp49 phospholipases A₂from snake venom and their antiviral activities against Dengue virus. Toxins. 2013;5:1780–1798. doi:10.3390/toxins5101780. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Fenard D., Lambeau G., Valentin E., Lefebvre J.C., Lazdunski M., Doglio A. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells. J. Clin. Investig. 1999;104:611–618. doi:10.1172/JCI6915. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Fenard D., Lambeau G., Maurin T., Lefebvre J.C., Doglio A. A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Mol. Pharmacol. 2001;60:341–347. doi:10.1124/mol.60.2.341. [PubMed] [CrossRef] [Google Scholar]

Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests (2024)
Top Articles
Latest Posts
Article information

Author: Arielle Torp

Last Updated:

Views: 5858

Rating: 4 / 5 (41 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Arielle Torp

Birthday: 1997-09-20

Address: 87313 Erdman Vista, North Dustinborough, WA 37563

Phone: +97216742823598

Job: Central Technology Officer

Hobby: Taekwondo, Macrame, Foreign language learning, Kite flying, Cooking, Skiing, Computer programming

Introduction: My name is Arielle Torp, I am a comfortable, kind, zealous, lovely, jolly, colorful, adventurous person who loves writing and wants to share my knowledge and understanding with you.